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promises the discovery of new strategies and the develop-
ment of innovative therapeutics to cure or alleviate bone 
loss in inflammatory and autoimmune diseases as well as in 
osteoporosis. This review gives an introduction to bone re-
modeling and the cells governing that process and summa-
rizes the most recent discoveries in the interdisciplinary field 
of osteoimmunology. Furthermore, an alternative large ani-
mal model will be discussed and the pathophysiological al-
terations of the immune system in osteoporosis will be high-
lighted.  Copyright © 2007 S. Karger AG, Basel 

 Introduction 

 The term ‘osteoimmunology’ was first used in the year 
2000 as Aaron and Choi were highlighting the interdigi-
tate communication between the immune and skeletal 
systems especially observed in autoimmune and other in-
flammatory diseases  [1] . Major advances and discoveries 
in this interdisciplinary research field have lead to the rev-
elation of molecular mechanisms as well as various cyto-
kines and signaling transducers participating in the regu-
latory interplay between immune cells and bone cells. 
Furthermore, besides the arsenal of mutual signaling 
molecules, immune and bone cells also share a common 
site of origin, namely bone marrow. Due to the spatial 
proximity of the developing cells it is proposed that they 
influence each other not only after maturation and activa-
tion, as Kong and colleagues already observed in 1999  [2, 
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 Abstract 
 Osteoimmunology is an interdisciplinary research field com-
bining the exciting fields of osteology and immunology. An 
observation that contributed enormously to the emergence 
of osteoimmunology was the accelerated bone loss caused 
by inflammatory diseases such as rheumatoid arthritis. Re-
ceptor activator of nuclear factor  � B ligand (RANKL), which 
is the main regulator of osteoclastogenesis, was found to be 
the primary culprit responsible for the enhanced activation 
of osteoclasts: activated T cells directly and indirectly in-
creased the expression of RANKL, and thereby promoted os-
teoclastic activity. Excessive bone loss is not only present in 
inflammatory diseases but also in autoimmune diseases and 
cancer. Furthermore, there is accumulating evidence that 
the very prevalent skeletal disorder osteoporosis is associ-
ated with alterations in the immune system. Meanwhile, nu-
merous connections have been discovered in osteoimmu-
nology beyond merely the actions of RANKL. These include 
the importance of osteoblasts in the maintenance of the he-
matopoietic stem cell niche and in lymphocyte develop-
ment as well as the functions of immune cells participating 
in osteoblast and osteoclast development. Furthermore, re-
search is being done investigating cytokines, chemokines, 
transcription factors and co-stimulatory molecules which 
are shared by both systems. Research in osteoimmunology 
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3] , but also at the very beginning of their existence. Among 
others, Taichman and Emerson have described the im-
portant role of osteoblasts in the establishment of hema-
topoietic stem cell niches, as well as in the engraftment 
and maintenance of hematopoietic stem cells (HSC) in the 
bone marrow  [4–8] . The development of bone cells has 
also been demonstrated to be supported by cells of the im-
mune system; for instance, macrophages encourage os-
teoblastogenesis by the secretion of interleukin-18  [9] , and 
T cells are capable of influencing osteoclastogenesis by the 
secretion of various cytokines such as interleukin-1, inter-
leukin-6, interferon- �  or interleukin-4  [10, 11] .

  However, the most prominent osteoimmunological 
example arose from the observation of osteoclast-medi-
ated bone loss in various inflammatory and autoimmune 
diseases such as rheumatoid arthritis, diabetes mellitus, 
lupus erythematosus, periodontal diseases and chronic 
viral infections (human immunodeficiency virus)  [3, 12–
16] . Kong and colleagues were the first to notice that the 
osteoclast-inducing capacity of activated T cells in adju-
vant arthritis was mediated through the RANKL/recep-
tor activator of nuclear factor  � B (RANK)/osteoproteger-
in (OPG) axis. RANKL is a key regulator of osteoclasto-
genesis, thus contributing enormously to a process called 
bone remodeling. In this process, osteoclasts resorb old 
and damaged bone, which is then replaced by new bone 
material deposited by osteoblasts. As normal physiologi-
cal bone remodeling is imperative for the maintenance of 
bone strength and integrity, imbalances either lead to in-
creased or decreased bone mass the latter often being 
caused by inflammatory diseases. 

  Considering all of these intricate interrelationships 
between the immune and skeletal system and the high 
potential for developing innovative new therapeutic 
drugs targeting osteoclastogenesis-regulating cytokines, 
it is worth taking a closer look at the molecular mecha-
nisms facilitating osteoclastogenesis and the environ-
mental factors affecting that process.

  Bone Function and Structure 

 Contrary to the general perception of bone being an 
inert, static material, it is a highly organized, living tissue 
and is the major constituent of the skeleton. The most 
prominent functions of bone are the protection of inter-
nal organs and the support of body structures. Beyond 
those functions bone additionally serves as an attach-
ment site for muscles allowing locomotion and as an ap-
propriate cavity for hematopoiesis in bone marrow. As a 

reservoir for inorganic ions, bone is responsible for the 
maintenance of calcium homeostasis and is able to rap-
idly mobilize mineral stores on metabolic demand. 

  Bone is composed of cells and extracellular matrix 
(ECM), the latter being further subdivided into an inor-
ganic and organic part. The organic matrix is mainly 
constituted of type I collagen (approximately 95%), as 
well as other types of collagens, noncollagenous proteins 
and proteoglycans, whereas the inorganic matrix pre-
dominantly contains calcium and phosphorus, appear-
ing as hydroxyapatite crystals ([3Ca 3 (PO 4 ) 2 ](OH) 2 ) de-
posited into the collagenous matrix. This interdigitate 
organization confers rigidity and strength to the skeleton 
while maintaining a certain degree of elasticity. The ma-
jor cells in bone are the osteoclasts, resorbing bone tissue, 
and osteoblasts (including osteocytes and bone lining 
cells), depositing bone tissue.

  Osteoblasts and Osteoclasts 

 The main functions of osteoblasts are to synthesize the 
collagen-rich organic matrix and to provide optimal con-
ditions for matrix mineralization by secreting numerous 
bone matrix proteins and matrix metalloproteinases 
(MMP)  [17] . Furthermore, osteoblasts support hemato-
poiesis, notably osteoclastogenesis  [18, 19] . Bone lining 
cells, one possible destiny of fully differentiated osteo-
blasts, are responsible for the initiation of bone remodel-
ing by matrix degradation  [20] , whereas osteocytes, the 
other form of terminally differentiated osteoblasts, act as 
mechanosensors in bone tissue, thereby regulating bone 
mass and structure  [21–24] .

  Osteoblasts, chondrocytes, adipocytes, stromal cells, 
myoblasts and tenocytes all originate from a common 
progenitor cell, the mesenchymal stem cell (MSC)  [25–
27] . The multipotent MSC undergoes several steps of 
commitment to give rise to progeny with more limited 
capacities until the differentiated end-stage cell is able to 
express particular functional markers and morphologi-
cal traits. Core binding factor 1 (Cbfa1, also termed runt-
related transcription factor 2, runx2) and the down-
stream factor osterix are crucial transcription factors for 
lineage commitment and osteoblast differentiation  [28, 
29] . The skeletons of Cbfa1 deficient mice only consist of 
cartilage, indicating its importance in osteoblast devel-
opment  [30, 31] . Recently, Jones et al.  [32]  identified the 
zinc-finger protein schnurri-3 (shn-3) which in associa-
tion with WWP1 acts as a regulator of Cbfa1 expression 
by influencing cbfa1 degradation by ubiquitination. 
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  Mature osteoblasts continue matrix deposition and 
start mineralization, expressing alkaline phosphatase 
and bone sialoprotein as well as osteocalcin and osteo-
pontin  [33] . Since osteoblasts produce a variety of pro-
teins for bone matrix synthesis they are hallmarked by a 
prominent Golgi apparatus and rough endoplasmic re-
ticulum. Osteoblasts turn into osteocytes after they have 
been surrounded by bone matrix. Osteocytes are poor in 
organelles, indicating other primary functions than ma-
trix synthesis and mineralization. In fact, mature osteo-
cytes alter their morphology by forming dendritic pro-
cesses which enable them to communicate with other 
embedded osteocytes. These processes are believed to act 
as mechanosensors in bone tissue, which allow them to 
react to environmental changes  [34–37] . Moreover, there 
is emerging evidence that apoptotic osteocytes increase 
the secretion of osteoclastogenic cytokines and thereby 
enhance bone resorption  [38, 39] . Bone lining cells also 
arise from osteoblasts and are believed to be resting, in-
active osteoblasts, covering the bone surface. As men-
tioned earlier, an important role in the initiation of bone 
remodeling has been assigned to them  [40] .

  Osteoclasts are tissue-specific giant polykaryons de-
rived from the monocyte/macrophage hematopoietic 
lineage and are the only cells capable of breaking down 
mineralized bone, dentine and calcified cartilage  [41, 
42] . The presence of RANKL and M-CSF (macrophage-
colony-stimulating factor) are essential for the formation 
and fusion of multinucleated cells, expressing osteoclast-
specific markers such as tartrate-resistant acid phospha-
tase (TRAP), cathepsin K, calcitonin receptor (CTR) and 
integrin receptors  [43–48] . Via integrins, osteoclasts at-
tach very tightly to the matrix, thereby creating an iso-
lated lacuna (Howship’s lacuna) able to maintain an 
acidic environment necessary for matrix dissolution 
 [49] . After attachment intracellular rearrangements lead 
to the polarization of the cell borders, whereas the seal-
ing zone is adjacent to the basolateral domain and the 
ruffled border, respectively. At the opposite side of the 
ruffled border emerges the functional secretory domain 
(FSD)  [50] . The ruffled border and the FSD are connect-
ed to each other via microtubules on which exocytotic 
vesicle traffic has been observed  [51] , suggesting the se-
cretion of resorbed material into the extracellular space. 
In addition to the development of distinct membrane do-
mains, the cytoskeleton undergoes organizational chang-
es creating a dense actin ring in osteoclasts preparing for 
resorption. 

  The resorption of bone matrix takes place in the re-
sorption lacuna  [52] . The ruffled border is formed by the 

fusion of cytoplasmic acidic vacuoles, thereby releasing 
acid into the resorption lacuna and initiating rapid dis-
solution of the hydroxyapatite crystals  [53] . Additionally, 
ATPases located in the ruffled border transport protons 
into the Howship’s lacuna. The protons are supplied by 
the reaction of water and carbon dioxide catalyzed by the 
enzyme carbonic anhydrase II resulting in the formation 
of protons and HCO3

–. Whereas the protons are pumped 
into the resorption lacuna HCO3

– is transported into the 
extracellular space via HCO 3 /Cl exchanger. The import-
ed chloride ions are also pumped into the resorption la-
cuna to form hydrochloric acid capable of dissolving the 
mineralized matrix. The organic matrix is degraded by 
various enzymes, including tartrate-resistant acid phos-
phatase (TRAP), cathepsin K and matrix metalloprotein-
ase 9 (MMP-9)  [20, 54–56] . 

  Bone Remodeling 

 Continuously changing functional demands require 
permanent adaption of the bone structure and microar-
chitecture. Wolff  [57]  has observed this principle of func-
tional adaptation already over 100 years ago. The process 
of where ‘form follows function’  [58]  consists of two ac-
tivities, namely, bone formation and bone resorption. 
While these processes are locally separated in modeling 
 [59, 60] , bone remodeling is characterized by the spatial 
and temporal coupling of bone formation by osteoblasts 
and bone resorption by osteoclasts  [61] . Approximately 
5–25% of bone surface is undergoing bone remodeling 
 [62, 63] , thereby restoring microdamages and ensuring 
mechanical integrity as well as regulating the release of 
calcium and phosphorus.

  Bone remodeling involves four main processes: activa-
tion, resorption, reversal and formation  [64] . The remod-
eling cycle is initiated by the activation of the quiescent 
bone surface, which is covered with bone lining cells  [65, 
66] . Osteoclast precursor cells are recruited to the acti-
vated surface and fuse to form mature, bone resorbing 
osteoclasts. The osteoclasts attach to the surface, dissolve 
the inorganic matrix by creating an acidic microenviron-
ment, and degrade the organic matrix with specific en-
zymes. As bone resorption subsides and resorption pits 
remain, osteoclasts disappear and mononuclear cells pre-
pare the surface for bone formation. The bone remodel-
ing cycle is finished with the synthesis and deposition of 
bone matrix by osteoblasts, and bone lining cells building 
a canopy covering the surface, keeping the material dor-
mant until the next cycle.
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  Regulation of Bone Remodeling 

 Prostaglandins, Leukotrienes and Hormones 
 Bone formation and resorption are under the subtle 

control of various local and systemic factors. Besides the 
multiple cytokines that participate in the regulatory sys-
tem of bone homeostasis prostaglandins, leukotrienes 
and hormones additionally interact with bone cells, 
thereby affecting bone remodeling processes. 

  Prostaglandins and leukotrienes are metabolites of ar-
achidonic acid and have stimulatory as well as inhibitory 
effects on bone  [67] . In the presence of factors stimulating 
bone resorption, prostaglandin E 2  (PGE 2 ) is produced by 
the cyclo-oxygenase 2 (COX2)-mediated conversion of 
arachidonic acid in osteoblasts. Recently, Ha et al.  [68]  
were able to demonstrate an inhibition of osteoclastogen-
esis primarily by the reduction of IL-1-induced COX2 ac-
tivity and PGE 2  production and only marginally by the 
suppression of RANKL by  � -lipoic acid  [69–71] . Addi-
tionally, leukotriene B4 was also shown to enhance osteo-
clastogenesis in a RANKL-independent manner  [72–
74] .

  The peptide hormone parathyroid hormone (PTH) is 
one of the most important regulators of calcium ion ho-
meostasis  [75, 76] . In response to low blood calcium lev-
els, PTH is secreted into the circulation and acts on kid-
ney, bone and intestine to maintain blood calcium con-
centrations. In bone, PTH upregulates the production of 
interleukin-6 and RANKL by osteoblasts, thereby facili-
tating the differentiation, activation and survival of os-
teoclasts  [77–82] . Thus, PTH as well as PTHrP (PTH-re-
lated protein) promote bone resorption and consequent-
ly the release of calcium  [83, 84] . 

  The active hormonal form of vitamin D, calcitriol 
(1 � ,25-dihydroxyvitamin D 3 ), is essential for the devel-
opment and maintenance of the mineralized skeleton, as 
demonstrated in various studies using vitamin D recep-
tor or 1 � (OH)ase knock-out mice  [85–87] . The impaired 
mineralization was normalized when a high-calcium, 
high-phosphate and high-lactose diet (rescue diet) was 
administered. However, Panda and colleagues were able 
to show that the administration of only 1,25(OH) 2 D 3  to 
1 � (OH)ase knock-out mice was not sufficient to normal-
ize the impaired mineralization if hypocalcemia was not 
corrected  [85] . Furthermore, vitamin D-deficient mice 
showed an increase in osteoblast number, bone formation 
and bone volume as well as increased serum alkaline 
phosphatase levels. Additionally, osteoclast numbers 
were decreased due to a decreased production of RANKL 
and an enhanced production of OPG  [88] .

  Concerning bone homeostasis, estrogen and andro-
gens are the most intensively investigated sex steroids 
and, in contrast to PTH and 1,25-dihydroxyvitamin D 3 , 
enhance bone formation and inhibit bone resorption 
 [89–93] . Estrogen as well as testosterone deficiency in-
evitably lead to an increased rate of bone turn-over, which 
has been demonstrated by Jilka et al.  [94] , who observed 
simultaneous increases in osteoclastic precursors as well 
as early osteoblastic precursors. Additionally, estrogen 
deficiency results in a net loss of bone as a consequence 
of an increased production of RANKL and a decreased 
production of OPG in osteoblastic cells as well as the en-
hancement of the secretion of pro-inflammatory and 
pro-resorptive cytokines in lymphocytes such as IL-1, IL-
6 and tumor necrosis factor- �  (TNF- � )  [95–100] . More-
over, the bone-protective effect of estrogen has been dem-
onstrated to be mediated by transforming growth factor-
 �  (TGF- � ), inducing apoptosis in osteoclasts  [101–103] . 
In two randomized controlled trials from the Women’s 
Health Initiative, hormone replacement therapy (HRT) 
had been shown to decrease the incidence of major osteo-
porotic fractures  [227, 228] . However, serious side effects 
such as cardiovascular disease and cancer have occurred 
and therefore other medications are used nowadays in the 
treatment of osteoporosis. Raloxifene is a selective estro-
gen receptor modulator (SERM) and is approved for the 
treatment of osteoporosis. Like estrogen, SERMs are 
known to mediate their effects through the estrogen re-
ceptor. While estrogen binds equally strongly to alpha 
and beta receptors, raloxifene preferentially binds to the 
alpha receptor. This specificity to a certain estrogen re-
ceptor allows a higher affinity to bone, and therefore the 
side effects of SERMs are less pronounced than those of 
HRT  [229] .

  The RANKL/OPG/RANK Network 

 The discovery of RANKL and its receptors RANK and 
OPG has highlighted the molecular processes in osteo-
clastogenesis, raising the possibility to inhibit the devel-
opment of osteoclasts, rescuing bone from exorbitant re-
sorption. In 1997, Simonet et al.  [104]  discovered a pro-
tein which exposed an osteopetrotic phenotype when 
overexpressed in transgenic mice. Investigating further, 
they found that this protein was secreted by preosteo-
blasts/stromal cells and was capable to inhibit osteoclast 
development and activation. Due to its bone-protective 
effects they named it osteoprotegerin. OPG belongs to the 
TNF receptor superfamily, however lacking a transmem-
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brane and cytoplasmic domain. OPG is expressed in a 
variety of tissues, including lung, heart, kidney, liver, 
stomach, intestine, brain, spinal cord, thyroid gland, 
smooth muscle tissue and bone, indicating multiple pos-
sible functions  [105–110] . The most prominent role of 
OPG has been assigned to bone protection; however, re-
cent investigations have also proposed important func-
tions of OPG in endothelial cell survival  [111, 112]  and 
vascular calcification  [113–115] . 

  After the identification of OPG followed the discovery 
of RANKL, which possesses not only a huge repertoire of 
names (TRANCE: TNF-related activation-induced cyto-
kine; ODF: osteoclast differentiating factor; OPGL: os-
teoprotegerin ligand; TNFSF11: TNF superfamily mem-
ber 11) but also many faces regarding its structure, func-
tion and appearance in tissues. The names originated 
from the four discoverers, each one having used different 
approaches to identify the protein. They searched either 
for a ligand for OPG  [106] , screened for apoptosis-regu-
lating genes in T cell hybridomas  [116] , or found RANKL 
to induce osteoclastogenesis  [117]  and enhance the life-
span of dendritic cells  [118] . Kartsogiannis et al.  [119]  
detected RANKL protein and mRNA expression in a va-
riety of tissues, including bone, brain, heart, kidney, liver, 
lung, intestine, skeletal muscle, mammary tissue, placen-
ta, spleen, thymus and testis [reviewed in  120] . This ex-
tensive distribution of RANKL throughout the body al-
ready indicates its multiple functions, whereas the most 
important one is dedicated to the induction of osteoclas-
togenesis, thus, the regulation of bone remodeling. 
RANKL knock-out mice reveal a severe osteopetrotic 
phenotype due to the absence of osteoclasts. Further-
more, defects in tooth eruption, lymph node genesis, 
mammary gland and lymphocyte development were re-
ported as well as disturbances in T cell/dendritic cell in-
teractions  [121, 122] . Recently, Jones et al.  [123]  reported 
the observation of RANKL triggering cell migration of 
cancer cells expressing the receptor RANK indicating a 
role for RANKL as a chemo-attractant for cancer cells.

  RANKL is a member of the TNF superfamily and is 
mainly expressed in preosteoblasts/stromal cells as well 
as on activated T cells  [106, 117, 118, 124]  and is closely 
related to the TNF-related apoptosis-inducing ligand 
TRAIL (homology  � 30%) and FasL (homology  � 20%). 
The human RANKL gene has been localized to chromo-
some 13q14 and encodes for three isoforms: RANKL1 
and RANKL2 are type II transmembrane proteins, 
whereas RANKL2 encodes for a shorter intracellular do-
main. RANKL3 is a soluble protein, partially produced 
by the cleavage of the membrane-bound form by TACE 

(TNF � -converting enzyme, a metalloprotease) or other 
MMPs and by the direct transcription of the alternative-
ly spliced RANKL-encoding gene  [125–129] . 

  The expression of OPG and RANKL is highly induc-
ible by various systemic and local factors. Among others, 
estrogens, bone morphogenetic protein (BMP) 2, INF- �  
and TGF- �  positively regulate OPG, whereas PTH, 
1,25(OH) 2  vitamin D 3 , glucocorticoids, prostaglandin E 2 , 
IL-6, IL-8 and IL-11 enhance the expression of RANKL 
[reviewed in  130] .

  The third participant in the bone remodeling regula-
tory system is RANK (receptor activator of nuclear factor 
 � B) and belongs to the TNFR superfamily like OPG  [118] . 
RANK represents a type I transmembrane protein and is 
expressed in tissues as ubiquitously as RANKL, although 
most commonly found in osteoclasts and dendritic cells 
 [131] . RANK-deficient mice show similar phenotypes to 
those of RANKL knock-out mice, including tooth erup-
tions, osteopetrosis and missing lymph nodes  [132] .

  The RANK signaling cascade ( fig. 1 ) is initiated when 
RANKL binds to the extracellular domain of RANK 
which passes the signal along to TRAF6 (TNF receptor-
associated factor 6)  [133–138] . By transfecting RANK de-
ficient cells in RANK mutants that are incapable of bind-
ing either TRAF 1, 2, 3, 5, or 6 Armstrong et al.  [134]  were 
able to demonstrate that predominantly TRAF6 was es-
sential for the induction of osteoclastogenesis. TRAF6 
has various downstream mediators which control the ex-
pression of osteoclast-specific genes during differentia-
tion and activation of osteoclasts. The two most investi-
gated pathways are the activation of the transcription fac-
tors NF- � B and AP-1 (activated protein 1). Targeted 
disruptions of the p50/p52 component of NF- � B and the 
c-fos component of AP-1 resulted in impaired osteoclas-
togenesis and revealed an osteopetrotic phenotype  [139–
141] . AP-1 is activated by signaling cascades mediated by 
JNK (c-Jun N-terminal kinase) whereas the phosphoryla-
tion of the inhibitor of NF- � B kinase (IKK) leads to the 
activation of NF- � B  [142–147] . Other cascades of mito-
gen-activated protein kinases such as the TGF- � -induc-
ible kinase TAK1 and the p38 stress kinase have also been 
described to participate in RANK signal transduction 
 [148–150] . p38 is activated via the phosphorylation by 
MKK6 and in turn activates the transcriptional regulator 
mi/Mitf, which is responsible for the transcriptional con-
trol of genes encoding for the osteoclast-specific enzymes 
TRAP and cathepsin K  [151, 152] . ERK (extracellular sig-
nal-related kinase) is a downstream target of MEK1 and 
acts as a negative regulator of osteoclastogenesis for ERK 
inhibitors have shown to accelerate RANKL-induced os-



 Rauner   /Sipos   /Pietschmann   

 

Int Arch Allergy Immunol 2007;143:31–4836

17β-E2
TGF-β

1,25(OH)2D3
PTH
PGE2

TNFα
IL-1

INFγ

IL-6

EC

MyP OB/SC

OC–P
aOC

MΦ

T-C

DC

M-CSF

c-fms

RANK

mRANKL

sRANKL

OPG

MHC-TCR

CD40-CD40L

CD28-B7.1/2

  2  

  1  



 Osteoimmunology  Int Arch Allergy Immunol 2007;143:31–48 37

teoclastogenesis  [153] . The serine/threonine kinase Akt 
and the phosphatidylinositol-3-OH kinase (PI(3)K) are 
downstream elements of src and are known to mediate 
cell survival, motility and cytoskeletal rearrangements by 
the activation of the MEK/ERK and Akt/NF � B pathways 
 [121,154] . Recently, AFX/FOXO4 was shown to be the key 
downstream mediator activated by Akt/PKB to modulate 
osteoclast survival  [155] . 

  However, on the level of transcription factors nuclear 
factor of activated T cells c1 (NFATc1) has been elected 
as the master regulator of osteoclastogenesis. Many 
downstream effectors of RANK such as NF- � B and AP-
1 contribute to the activation of NFATc1. Furthermore, 
RANKL-induced Ca 2+ -signaling, mediated by immu-
noreceptor tyrosine-based activation motifs (ITAMs), 
has been shown to be indispensable for osteoclastogen-
esis, since mice deficient in the ITAM-containing adap-
tor molecules DAP (DNAX-activating protein) 12 and 
Fc common receptor  �  chain (FcR � ) are severely osteo-
petrotic. After retroviral transfer of DAP12 the osteope-

trotic phenotype was rescued. The association of paired 
immunoglobulin-like receptor A (PIR-A) and OSCAR 
to FcR �  and triggering receptor expressed on mye-
loid cells (TREM) 2 and signal-regulatory protein  � 1 
(SIRP � 1) to DAP12 in osteoclast precursors is consid-
ered to act as a co-stimulatory signal for RANKL, since 
one signal by its own is not able to induce osteoclasto-
genesis  [156–158] .

  Cytokines 

 Recent studies dealt with the effects cytokines have on 
the generation of osteoblasts and osteoclasts. It is known 
that IL-1 � , IL-1 � , IL-6 and other members of the gp130 
cytokine family, IL-7 and TNF- �  directly or indirectly 
promote osteoclastogenesis  [159–162] , whereas interfer-
on-beta (IFN- � ), IFN- � , IL-3, IL-4, IL-10, IL-13, and IL-
12 alone and in synergy with IL-18  [163–168] , amongst 
others, inhibit osteoclast formation. TGF- �  was found to 
both induce, via suppressor of cytokine signaling 3 
(SOCS3)  [163] , and suppress osteoclastogenesis  [169] . 
For a detailed list, see the review by Theolyre et al. 
 [120] .

  Among the osteoclastogenesis-inhibiting cytokines, 
interferons have attracted increasing attention. Thus, 
IFN- � , a cytokine produced by activated T cells, was 
identified to strongly suppress osteoclastogenesis by in-
hibiting RANKL signaling by downregulation of the 
transcription factor TRAF6 expression via Stat1. The 
same applies for IFN- � , which is especially interesting in 
that this cytokine is induced by RANKL via a second 
down-stream molecule, namely c-Fos, but at the same 
time acts as negative regulator of RANKL signaling by 
inhibiting c-Fos expression in terms of a negative feed-
back loop. This interference of interferons with osteoclast 
differentiation was reviewed in detail by Takayanagi et al. 
 [170] .

  However, there is little detailed information on the 
cytokine production pattern of osteoblasts. IL-6 was 
shown to be produced by stromal cells/osteoblasts  [171] . 
A number of growth factors and hormones are known 
to promote proliferation and differentiation of osteo-
blasts, such as TGF- �  (which is also assumed to depress 
osteoblast differentiation)  [172] , parathyroid hormone, 
its locally produced homologue parathyroid hormone-
related peptide (PTHrP), low-density lipoprotein recep-
tor-related protein-5 (LRP-5)  [173] , and osteopontin 
 [174] . In recent research in osteology, much attention 
has been attributed towards bone morphogenic proteins 

  Fig. 1.  RANK signaling in osteoclasts. The RANK signaling cas-
cade is initiated upon the binding of RANKL to the extracellular 
domain of RANK which passes the signal along to TRAF6. The 
activation of TRAF6 initiates pathways leading to the activation 
of the transcription factors NFAT, NFkB, the MAP kinase media-
tors jun, fos and p38 as well as the down-stream targets of Akt 
AFX/FOXO4, which contribute to osteoclast differentiation, ac-
tivation and survival. The ITAM-containing co-stimulatory mol-
ecules DAP12 and FcR � , respectively, initiate Ca 2+ -signaling 
leading to the activation of NFATc1. This schematic representa-
tion only focuses on the most important pathways, not illuminat-
ing further interactions of the signaling mediators. 
  Fig. 2.  Cellular regulation of osteoclastogenesis. Osteoblasts/stro-
mal cells are the main regulators of osteoclastogenesis. They ex-
press the cytokines RANKL, which binds to RANK on osteoclast 
precursors and thereby induces osteoclastogenesis, and OPG, 
which is able to prevent that interaction. Amongst others, TGF- �  
and 17- � -estradiol stimulate the production of OPG whereas 
1,25(OH) 2 D 3 , PTH and PGE 2  promote the production of RANKL. 
Upon activation via dendritic cells T-cells activate osteoclasts di-
rectly through the secretion of sRANKL. Furthermore, T cells 
secrete INFg, which on the one hand stimulates macrophages to 
produce pro-inflammatory cytokines which in turn promote 
RANKL expression in osteoblasts/stromal cells, and on the other 
hand suppresses permanent osteoclast activation by the destruc-
tion of TRAF6. Furthermore, endothelial cells have been shown 
to express RANKL and OPG and might therefore also participate 
in the regulation of osteoclastogenesis. MyP = Myeloid progen-
itor; OC-P = osteoclast precursor; aOC = activated osteoclast;
OB/SC = osteoblast/stromal cell; M �  = macrophage; T-C = T cell; 
DC = dendritic cell; EC = endothelial cell. Modified from Yasuda 
et al. [106]. 
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(BMPs). So far, in pigs BMP-6 and BMP-7 have been 
shown to increase osteogenic differentiation   in vitro 
 [175] , and BMP-4, besides IGF-1 and TGF- � , was found 
to be expressed during distraction osteogenesis in a pig 
model  [176] . For human mesenchymal stem cells 
(MSCs), among BMP-2, -4, -6, and -7, BMP-6 was found 
to be the most consistent and potent regulator of osteo-
blast differentiation. Addition of BMP-6 to MSCs in vi-
tro leads to the upregulation of type I collagen, osteocal-
cin, and bone sialoprotein  [177] . Production of IL-6 and 
RANKL by osteoblasts is promoted by PTH and TNF- � , 
but with markedly different kinetics. Whereas PTH in-
duces only a rapid, but transient elevation of both cyto-
kines, TNF- �  leads to a biphasic increase of these cyto-
kines, thus indicating the potent role of TNF- �  in patho-
logic conditions  [77] .

  Interactions of Bone Cells with Lymphocytes  

 There is general agreement that lymphocytes influ-
ence bone remodeling by exerting an impact on osteo-
clastogenesis ( fig. 2 ). Thus, T cells are assumed to be re-
sponsible for bone loss which occurs as a consequence of 
a series of pathological conditions, for example systemic 
viral infections and chronic local bone and joint diseas-
es, such as rheumatoid arthritis or inflammatory bowel 
disease  [3, 178] . Concerning the type of impact that T 
cells exert on osteoclastogenesis results from in vitro 
and in vivo experiments differ to a high degree. The 
same is true for different lymphocyte subpopulations, 
i.e. data concerning the effect of CD4 and CD8 lympho-
cytes on osteoclastogenesis, are not consistent. On the 
one hand, data from literature suggest an inhibitory ef-
fect of  T cells. In one in vitro study, 1 � ,25(OH) 2 D 3 -
stimulated osteoclast-like cell formation was enhanced 
after lymphocyte depletion. This was attributed to in-
creased PGE 2  production and consecutive upregulated 
RANKL and downregulated OPG expression  [179] . 
IFN- �  was found to be the modulatory factor, which is 
produced by activated (by anti-CD3 � ) T cells, and which 
interferes with TRAF6, thus strongly inhibiting the 
RANKL-induced activation of NF- � B and JNK in vitro. 
Resting T cells were found to exert no effect on osteo-
clastogenesis in the cited reference. These results were 
confirmed by another experiment, demonstrating that 
activated T cells have no effect in co-culture with  IFN-
  �  R  –/–  BMMs (bone marrow-derived monocyte/macro-
phage precursor cells) stimulated by RANKL  [11] . In 
contrast to the above mentioned results, resting T cells 

were also found to negatively regulate osteoclastogenesis 
via production of granulocyte/monocyte colony-stimu-
lating factor (GM-CSF) and IFN- �  by CD4 but not CD8 
T cells  [180] . Another in vitro study demonstrated that 
the downregulatory effect of lymphocytes is due to the 
CD8 T cell subset, and independent of IL-4 and TGF- �  
 [181] . On the other hand, activated T cells were shown 
to promote osteoclastogenesis in vitro and   in vivo. 
 Activated (by anti-CD3 �  and anti-CD28) CD4 T cells 
exerted their effect via membrane-bound and secretory 
RANKL. Transfer of  ctla4  –/–  bone marrow cells in  
ragl  –/–  mice led to a significant decrease in bone min-
eral density. Consistent results were achieved by direct 
transfer of purified  ctla4  –/–  T cells in  ragl  –/–  and  opgl  –/–  
mice  [3] . Recently, it was demonstrated that the effects 
of activated T cells on osteoclastogenesis depend on how 
they are activated  [182] . Anti CD3 � - and anti CD28-Ab-
activated T cells inhibited osteoclastogenesis, whereas T 
cells activated with staphylococcal enterotoxin A, PHA, 
and Con A had inconsistent effects. The osteoclastogen-
ic effect was CD4+-dependent.

  In mice it was shown that T cells are not absolutely re-
quired for osteoclastogenesis in a rheumatoid arthritis 
model, although they form an important pathologic fea-
ture in arthritic joints  [183] . T cells in rheumatic joints 
are known to be in a kind of frustrated state, which is 
characterized by a downregulation of IFN- � -production 
 [184, 185] . Therefore it seems as if proinflammatory cy-
tokines, which are produced by macrophages upon stim-
ulation by T cells, act on synovial fibroblasts. These cells 
are the main source of RANKL responsible for osteoclast 
differentiation, although RANKL has also been shown to 
be produced by T cells. This model may be sufficient for 
explaining why T cells, which on the one hand produce 
IFN- � , act osteoclastogenically by interacting with other 
cells in the rheumatoid joint.

  Besides lymphocyte-osteoclast interactions there is 
now increasing awareness of the importance of osteo-
blasts in osteoimmunology. These cells seem to have an-
tigen-presenting properties, since osteoblast cell lines 
were shown to express MHCII molecules besides the ad-
hesins CD54 (ICAM-1) and CD166 (ALCAM), which 
were upregulated through IFN- � , and could thus also 
activate T cells. Furthermore, osteoblasts were shown to 
express members of the toll-like receptor family, in par-
ticular TLR-4, TLR-5 and TLR-9, indicating an active 
role in host immune response. Pattern recognition re-
ceptors were found not only on the surface of osteoblasts 
but also intracellularly, as was recently reported by Mar-
riott et al.  [186]  who were able to demonstrate the expres-



 Osteoimmunology  Int Arch Allergy Immunol 2007;143:31–48 39

sion of the nucleotide-binding oligomerization domain 
proteins NOD1 and NOD2 following bacterial challenge 
of the cells. On the other hand, osteoblasts can produce 
IL-6 upon encountering T cells and stimulation by IL-17 
 [187] . Stanley et al. also demonstrated the ability of os-
teoblastic cell lines to present superantigen to T cells. 
This is of importance as superantigens are implicated in 
a variety of autoimmune conditions, such as rheumatoid 
arthritis.

  Interactions of Bone Cells with Hematopoietic Stem 
Cells  

 Hematopoietic stem cells (HSC) are located in the 
bone marrow and are responsible for the continuous pro-
duction of blood cells in an adult organism. Their capac-
ity for self-renewal and their ability to differentiate into 
multiple cell types is strongly dependent on their sur-
rounding microenvironment, which is also referred to as 
stem cell niche. There, cells produce various signaling 
molecules, cell adhesion molecules and components of 
the extracellular matrix and thereby determine the long-
term repopulating ability of stem cells. Taichman and 
Emerson were among the first to notice that osteoblasts 
play a crucial role in stem cell maintenance due to an in-
timate cell-to-cell contact via integrins  [5–8] . Another 
interesting observation was made in cbfa1 deficient mice, 
which were devoid of osteoblasts. In addition, those mice 
were characterized by the absence of bone marrow, al-
though they showed normal hematopoietic development 
in liver and spleen until day E17.5, suggesting an impor-
tant role for osteoblasts in HSC homing into the bone 
marrow cavity  [31, 32] . Using a chimeric mouse model 
Kronenberg  [188]  was able to demonstrate the inhibition 
of HSC homing into the bone marrow after the deletion 
of the G-protein Gs � . Furthermore, he and others report-
ed the supporting effects of osteogenic PTHs in HSC 
maintenance by stimulating bone lining cells to produce 
N-cadherin, important for stem cell attachment, and jag-
ged-1, activating notch receptors on HSC  [188, 189] . Arai 
et al.  [190]  identified a quiescent and anti-apoptotic sub-
population of HSC adhering to osteoblasts via the recep-
tor tyrosine kinase Tie2 on HSCs and angiopoietin-1 on 
osteoblasts. Furthermore, the interaction of Tie2 with an-
giopoietin-1 increased the cadherin and intergrin medi-
ated cell adhesion to osteoblasts and maintained the long-
term repopulating activity of HSCs.

  What Is Known about Large Animal (Porcine) 
Osteoimmunology? 

 Osteology is a fast developing branch in gerontological 
and rheumatological research, since postmenopausal os-
teoporosis as well as osteoporosis in elderly men is of 
great importance for individual well-being and public 
health. Most scientific work in medical research is per-
formed in rodent models and hardly any experiments are 
conducted in larger animals such as cats, dogs or rabbits. 
Porcine cells should be paid more attention in osteology 
as porcine bone tissue is more closerly related to humans 
 [191] . Thus, it would be of great benefit for osteological 
research to create a well characterized animal model of 
similar size and physiology to the human species. Like 
most other mammals the pig is a quadruped. As a conse-
quence its skeleton is subjected to different forces when 
compared to humans, which is a weakness of this model 
from the biomechanical point of view. Nevertheless, stat-
ic features of its bone apparatus, joints, muscles, and ten-
dons exhibit more similarities to humans than do those 
of rodents. An additional major advantage of the porcine 
system over the rodent system is the opportunity to har-
vest a strikingly higher amount of bone marrow and 
blood cells per individual. Besides that, treatment of some 
osteopathologies in farm animals is also of economic in-
terest. Well-fitting examples for such pathologic condi-
tions in the porcine species are osteochondrosis dessicans 
and the humpback syndrome in fattening pigs. Many as-
pects of the etiology, pathogenesis, and treatment are still 
unclear. For that reason, in vitro models are still one im-
portant option to enlarge our knowledge concerning ba-
sic and therapeutic mechanisms in osteology. Since in 
pigs no information on the cytokine pattern of bone mar-
row-derived cells from healthy animals is currently avail-
able, our main interest was to collect basic data regarding 
the cytokine pattern of these cells cultured in and with-
out presence of 1 � ,25(OH) 2 D 3 , which is known to pro-
mote osteoclastogenesis. This was considered an impor-
tant issue, as bone marrow stromal cells (and lympho-
cytes) provide the milieu leading to increased or decreased 
osteoclastogenesis to a large extent by their cytokine pro-
duction pattern. Since RANKL plays an important role 
in the generation of osteoclasts in humans and rodents 
 [106] , it was of particular interest to search for indications 
of the existence of a porcine homologue. At the mRNA 
level, cytokines with the most remarkable expression in-
tensities were IL-1 � , IL-6 and IL-8. Immunofluorescent 
staining with specific mAbs recognizing a panel of por-
cine cytokines revealed the presence of IL-1 �  and IL-6 in 
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stromal cells and in osteoclasts. Since the production of 
IL-6 has predominantly been attributed to stromal cells 
 [171] , but was also shown to be produced by osteoclasts 
in our experiments, it appears that these cells could sup-
port their generation in a positive feedback fashion. Over-
all expression of TNF- �  mRNA was low in the cultured 
bone marrow-derived cells. When investigating produc-
tion of TNF- �  at the protein level, stromal cells exhibited 
only faint immunofluorescent signals, but osteoclasts, in 
contrast, gave a bright fluorescence  [192] . This is in ac-
cordance with the murine system, where osteoclasts are 
known to produce considerable amounts of TNF- �  
 [193] .

  In the recent past, scientific interest in bone biology 
was focused on the RANK/RANKL/OPG osteoclasto-
genesis-regulatory cytokine system. We found that the 
porcine RANKL homologue not only was expressed in 
bone marrow-derived cells, but also could be detected in 
white blood cells by RT-PCR. The following sequencing 
step confirmed the PCR results by exhibiting a consider-
able nucleotide homology to human and murine sequenc-
es which was 79% in the case of the porcine sequence 
(GenBank Acc. No. AY606802) when compared to the 

human sequence. Then, we quantitatively analyzed 
RANKL production in cell culture supernatants by an 
ELISA system evaluated for the detection of human sol-
uble RANKL. Indeed, RANKL was expressed to a sig-
nificantly higher degree in cultures treated with 
1 � ,25(OH) 2 D 3  when compared to control cultures with-
out 1 � ,25(OH) 2 D 3   [192] . This finding implicates that 
porcine RANKL is upregulated through 1 � ,25(OH) 2 D 3 , 
as is known from non-porcine systems  [194] , and might 
therefore be the cytokine with the highest osteoclasto-
genic activity in pigs. Furthermore, recent experiments 
demonstrated that porcine osteoblasts predominantly 
expressed soluble and membrane-bound RANKL besides 
other cytokines found in the murine osteoblast such as 
IL-1, IL-6, and TNF- �   [195] .

  In conclusion, the cytokine pattern of the porcine sys-
tem reflects those found in human and murine bone 
marrow cell cultures. Additionally, our findings provide 
strong evidence of the existence of the RANK/RANKL/
OPG system in pigs. Further experiments should clarify 
the impact that 1 � ,25(OH) 2 D 3  exerts on cytokine pro-
duction by peripheral lymphocytes in pigs. 

  Currently, we are investigating the role of lymphocyte 
subsets on porcine osteoclast generation – seemingly pe-
ripheral blood mononuclear cells in general and CD4 +  T 
cells in particular exert an osteoclastogenic effect in os-
teoclastogenesis – and immunophenotypic and cyto-
kinologic properties of porcine osteoblasts.

  In the near future it should be possible to use the on-
going increasing understanding of the osteoimmunolog-
ical principles of porcine bone marrow-derived cells also 
to replace rodent models for osteological research by por-
cine in vivo models at a higher rate than today. Glucocor-
ticoid-induced osteoporosis in minipigs may serve as an 
example of a porcine in vivo model of osteoporosis 
 [196] .

  Osteoporosis: Immunologic Aspects 

 Osteoporosis is defined as a skeletal disorder charac-
terized by compromised bone strength predisposing a 
person to an increased risk of fracture. Bone strength pri-
marily reflects the integration of bone density and bone 
quality  [197] . Osteoporosis is among the most important 
conditions associated with aging; the lifetime risk for a 
fragility fracture (vertebral fracture ( fig. 3 ), distal fore-
arm fracture, hip fracture) in a 50-year-old white US 
woman is approximately 40%, whereas that in a white US 
man is 13%  [198] .

Thoracic spine Lumbar spine

  Fig. 3.  Magnetic resonance images of the thoracic and lumbar 
spine. Magnetic resonance study of the thoracic and lumbar spine 
of a man with multiple vertebral fractures due to osteoporosis. 
Courtesy of Prof. Dr. H. Resch, Department of Medicine 2, St. 
Vincent Hospital, Vienna. 
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  From a theoretical point of view, osteoporosis results 
from any imbalance of bone turnover that results in an 
excess of osteoclast activity (bone resorption) over osteo-
blast activity (bone formation). Nevertheless, it should be 
borne in mind that in an individual, bone mass is deter-
mined by the amount of bone mass achieved at skeletal 
maturity (‘peak bone mass’) and the velocity of subse-
quent bone loss. The risk of osteoporosis is strongly in-
fluenced by genetic components  [199] ; further determi-
nants are hormonal and nutritional factors as well as ex-
ercise  [200] . Generally, osteoporosis is classified as either 
primary (idiopathic) or secondary. A variety of diseases 
(e.g. rheumatoid arthritis  [201, 202] ), medications (e.g. 
glucocorticoids or cyclosporin A) and conditions such as 
alcohol abuse can result in secondary osteoporosis. 

  In 1998, Riggs et al.  [203]  proposed a unitary model of 
primary (involutional) osteoporosis in postmenopausal 
women and aging men. As in the model of Riggs and 
Melton  [204],  the existence of an early rapid and a late 
slow phase of bone loss in women is emphasized; in con-
trast, in aging men there is only one slow phase of con-
tinuous bone loss. The early rapid phase of bone loss in 
women clearly results from postmenopausal estrogen de-
ficiency. In the late, slow phase of bone loss, vitamin D 
deficiency and extraskeletal consequences of estrogen 
deficiency lead to an increase of serum PTH levels; sec-
ondary hyperparathyroidism further stimulates bone re-
sorption  [203] .

  As early as 1987, Pacifici et al.  [205]  reported that 
monocytes from patients with idiopathic osteoporosis 
produced significantly more IL-1 than those from control 
subjects. In subsequent work  [206],  the authors demon-
strated an increased IL-1 production by monocytes from 
postmenopausal when compared to premenopausal 
women or estrogen/progesterone treated women. Where-
as nonosteoporotic postmenopausal women achieved 
premenopausal IL-1 levels within 8 years of menopause, 
in osteoporotic subjects an elevated IL-1 production was 
seen as long as 15 years after menopause. Surgically in-
duced menopause was associated with a production of 
IL-1, TNF- �  and GM-CSF by mononuclear cells; in wom-
en who received estrogen replacement therapy, simulta-
neous decreases of cytokine secretion and bone resorp-
tion were noted  [207] . Whereas Zarrabeitia et al.  [208]  
did not detect abnormalities of cytokine production in 
osteoporosis, Zheng et al.  [209]  found an increased pro-
duction of IL-1, IL-6 and TNF- �  by whole blood cells 
from patients with postmenopausal osteoporosis. Taken 
together these data indicate that an increased production 
of mononuclear cell immune products contributes to the 

postmenopausal enhancement of bone resorption. In this 
context we should like to mention that the aging process 
is characterized by a progressive proinflammatory status, 
a phenomenon referred to as ‘inflamm-aging’ by France-
schi et al. [210].

  In addition to changes of cytokine production by 
monocytes, T cell abnormalities have been reported in 
patients with osteoporosis. In 1984, Fujita et al.  [211]  de-
scribed an increased CD4+/CD8+ ratio in osteoporosis; 
these findings were corroborated by Imai et al.  [212]  and 
Rosen et al.  [213] . Hustmyer et al.  [214]  described a nega-
tive correlation between the CD8+/CD56+ subset and 
bone mineral density. Data from our laboratory indicate 
that in postmenopausal women with osteoporotic frac-
tures the CD8+/CD57+ subset is expanded; moreover, in 
the fracture patients the percentage of CD8+ cells that 
expressed TNF- �  was augmented  [215] . Thus, in addi-
tion to monocytes and their products, T cells appear to 
contribute to the pathogenesis of primary osteoporosis.

  Quite surprisingly there are only few studies on 
RANKL or osteoprotegerin in patients with osteoporo-
sis. Eghbali-Fatourechi et al.  [216]  determined the sur-
face expression of RANKL on bone marrow mononucle-
ar cells in premenopausal, early postmenopausal and 
 estrogen treated postmenopausal women by flow cytom-
etry. The surface expression of RANKL on marrow stro-
mal cells, B cells and T cells was significantly higher in 
early postmenopausal when compared to premenopaus-
al or estrogen-treated women. These findings suggest 
that upregulation of RANKL on stromal cells and lym-
phocytes in the bone marrow could mediate increased 
bone resorption consecutive to estrogen deficiency. 
Whereas the study of Eghbali-Fatourechi et al.  [216]  re-
fers to the early, rapid phase of postmenopausal bone loss 
there are data that indicate a role of the RANKL/OPG 
pathway also in fracture susceptibility: Abdallah et al. 
 [217]  demonstrated an increased RANKL/OPG mRNA 
ratio in bone biopsies from women with hip fractures. In 
contrast to studies on surface expression or mRNA levels 
of RANKL and OPG, the measurement of these markers 
in serum has produced somewhat paradoxical results. 
With regard to OPG, most studies found elevated OPG 
serum levels in patients with osteoporosis  [218–221]  
whereas one study reported decreased OPG levels in os-
teoporotic patients with vertebral fractures  [222] . Liu et 
al.  [223]  found no differences of serum OPG and RANKL 
levels as well as the RANKL/OPG ratio among normal, 
osteopenic and osteoporotic women. Nevertheless, 
Schett et al.  [224]  showed that low levels of RANKL are 
a predictor of an increased risk of nontraumatic fracture. 
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While it is possible that at least some of these observa-
tions could represent compensatory mechanisms to 
counteract enhanced bone degradation, the clinical util-
ity of serum RANKL and OPG measurements still re-
quires further investigation  [225] . Further evidence for 
the critical role of the RANKL/OPG pathway comes 
from an intervention trial: the administration of deno-
sumab, a monoclonal antibody against RANKL, in post-
menopausal women with low bone mass decreased bone 

resorption and increased bone mineral density  [226] . 
Thus, RANKL appears to be a promising target for the 
treatment of osteoporosis.
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