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Abstract

HE the past decades have seen an exponential growth of biomedical data that remains unex-
T plored for research purposes. The increase in available unidentifiable patient record data,
high-throughput proteomics results, and chemical pharmacology data, provides the opportu-
nity of studying diseases as complex phenomena, triggered by a series of factors. In the present
thesis, these disparate data types are combined in order to gain further insight into human
disease etiology.

Electronic Health Records (EHR) contain coded and unstructured information, posing ad-
ditional challenges in data extraction. In chapter [, data and text mining techniques are used
to retrieve medical terms from an electronic health record database, in the context of discov-
ering disease correlations and stratifying patient cohorts. Furthermore, the re-use of electronic
health record content in visualization systems is analyzed. Secondary use of EHRs is useful for
comparing and detecting trends in the data, for both clinicians and researchers.

In the third chapter, protein-protein interaction data is explored for deducing functional
relationships in human cellular systems in relation to health and disease. By combining dis-
ease gene information with protein data, disease related protein complexes can be identified,
and then mapped to tissues to gain spatial resolution. With this, insight into the biological pro-
cesses that prime certain tissues for developing tissue-specific disorders is gained. By integrating
phenotypic data from mouse models with protein networks, the systems biology driving organ
development can be discovered, paving the way for new approaches in treatment, diagnostics,
and in regenerative medicine.

Finally, a network based approach is used to combine protein interaction data, disease in-
formation, functional annotation and chemical structures. By integrating the chemical biology
knowledge with network biology, chemical exposures can be related to disease, and novel molec-
ular targets for drugs can be identified. In the last article in this thesis, a new web server for
exploring environmental chemicals, drugs, and natural products, based on their activity profile
against biological targets and their adverse effects, is shown.

Collectively, this work demonstrates the power of integrating divergent data types in disease

systems biology for understanding the complex nature of human biological systems.
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Dansk resumé

E seneste 4rtier har der varet en eksponentiel vekst i biomedicinske data, der stadig stér
D tilbage som uanalyseret i forskningsformal. Stigningen i de disponible uidentificerbare
patientjournal data samt high-throughput proteomics- og kemiske farmakologiske data, giver
mulighed for at studere sygdomme som komplekse fenomener, udleest af en reekke fakrorer. I
den foreliggende athandling er disse forskellige datatyper kombineret med henblik pd at opnd
yderligere indsigt i menneskelige sygdommes @tiologi.

Elektroniske Patient Journaler (EPJ) indeholder kodet og ustruktureret information, hvilket
skaber yderligere udfordringer i forbindelse med dataudtreekning. Data- og tekst udvindelses
teknikker bruges her for at hente medicinske termer fra en elektronisk patientjournalsystem
database, med malet at opdage sygdoms korrelationer og stratificere patient kohorter. Desuden
er genbrug af elektroniske patientjournalsystemers indhold pd visualisering systemer analyseret.
Sekunder anvendelse af EPJ er nyttig til at sammenligne og afsleere tendenser i data, bide
for klinikere og forskere. I det tredje kapitel bliver protein-protein interaktion data udforsket
for at udlede funktionelle relationer i humane celler i relation til sundhed og sygdom. Ved
at kombinere oplysninger fra sygdomsgener med protein data, er det muligt at identificere
sygdomsrelaterede protein komplekser, og derefter kortlegge disse til vev for at f& rummelig
oplaesning. Med dette, har denne cegede indsigt i de biologiske processor der primer bestemte
vaevs typer, givet en steetre indsigt i udviklingen af vevsspecifikke lidelser. Ved at integrere
fenotypiske data fra musemodeller med protein netvark, kan denne system biologisk drevne
organ udvikling blive opdaget, hvilket har banet vejen for nye tilgange i behandling, diagnostik
og regenerativ medicin.

Endelig er en netvark baseret tilgang brugt, der anvendes til at kombinere protein interaktion
darta, sygdom information, funktionelle annotation og kemiske strukturer. Ved at integrere
den kemisk biologiske viden med netverks biologi, kan kemiske eksponeringer relatereres til
sygdom, og nye molekylere mél for legemidler kan identificeres. I den sidste artikel i denne
athandling presenteres en ny web-server der udforsker miljeemaessige kemikalier, leegemidler
og natutlige produkeer, baseret pa deres aktivitet profil mod biologiske mal og deres skadelige
virkninger. Kollektivt, viser dette arbejde effekten af at integrere forskellige datatyper i sygdoms
systembiologi for at forstd den komplekse karakeer af de menneskelige biologiske systemer.
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Chapter

Introduction

YSTEMS BIOLOGY and new technological advances supporting large scale biological studies
have pushed us away from traditional studies of single genes, proteins or phenotypes to-
wards a more integrative holistic approach to biological research. Complex processes, such as
those triggering many common diseases like cancer, diabetes, hypertension, and psychiatric dis-
orders, can be better understood by studying them as systems. Potential and emergent causes
can then be revealed by analyzing the high order interactions between the component parts.

For decades, disease gene finding has been driven by single factorial perturbations leading
to phenotypical changes. One affected gene leading to changes in abundance and activity of its
transcribed protein, causing disease. This simple hypotheses lead to the discovery of thousands
of genes for rare Mendelian diseases, but has been failing for the complex inherited phenotypes
in the human population [f].

Recent advances in large-scale genomic studies revealed that common forms of disease might
be caused by disruption of functional molecular networks. Disease states are then affected by
a complex interaction of genetic and environmental factors (Figure [[.1). To understand the
behavior of any one gene in the context of human disease, individual genes must be understood
in the context of molecular networks that define the different disease states.

The new trends in biology, shifting the focus from singular events to large scale analysis
of systems have given rise to continuous data generation, forcing the field of data analysis to
move faster, in order to keep up the pace. To complicate things, new data acquisition methods
are developed every day, enforcing the creation of new data types and adding to the existing,
making it hard to come up with standardized ways of sharing and storing them.

The evolving of technology itself, with new and faster machines, and more storage space
fuels this advancement, while data analysis lags slightly behind. New tools are continuously
improved, and data is now being shared faster than before, generating scientific findings at an
unprecedented pace.

Recent sequencing efforts have made available entire genome datasets. The availability of fast
and cheap sequencing machines has dropped the cost of sequencing an entire human genome to
a couple of thousand dollars. When Craig Venter's genome was sequenced, the cost was around
$70 million! Accompanying the evolution of high throughput sequencing, biological databases
experienced extreme growth. Protein structure, expression array, and pathway databases have
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Figure 1.x: Views on complex discases [g]. a, the classic reductionist approach of identifying variation in DNA
correlating with disease phenotypes, effective for simple Mendelian diseases. b, isolated DNA changes do not lead
directly to disease, but instead lead to genetic changes in RNA, proteins and metabolites that then affect disease
propensity. Intermediate phenotypes can describe early relationships between genes and disease. ¢, integrationist ap-
proach to disease exploration. A combination of genetic and environmental factors triggers disruptions in molecular
networks, which then go on and trigger disease risk.

evolved side-by-side. At the same time manual curation lagged behind, and cannot keep up
with the constant flow of information. This justifies the need of high performance computing,
and automation strategies in biology.

Up to now I only referred to the more structured data, that is readily available and can be
easily imported into tools and computer programs for analysis. In reality, however, the bulk of
biological data is not in the form of structured and neatly arranged information, but rather in
free text in scientific literature and medical databases. Just MEDLINE [3] alone contains over
18 million references to journal articles, and their searchable interface PubMed handles over
80 million queries per month, as seen in Figure [.2]. It's hard not to get lost, and even harder to
keep up with all the new research being published, even on very specialized research fields. This
vast amount of easily accessible, but poorly structured data calls for new strategies and methods
to tackle the complex task of information extraction from free text.

Side-by-side with the publicly available data, there has been an increase in the amount of
information collected for other purposes, remaining unused for research. For example, medical



NATIONAL LIBRARY OF MEDICIN

Number of MEDLINE Searches

Figure 1.2: Number of MEDLINE searches from Jan-97 to Sep-o7 [4].

databases from the public or private health systems are often subject to much more strict ethical
and privacy laws than sequence data, and thus are not made readily available to the public. One
other example is pharmaceutical databases, often kept in the secret of the companies which
develop them. Allowing researchers to access those databases may lead to additional insights
into drug usage and side-effects.

All these different pieces of information are collected and assembled independently, and even
publicly available databases lack the amount of integration that would allow for large-scale
analysis of complex biological systems. This thesis will focus on visualizing all those data as
little pieces of a large, ever-growing puzzle. It covers fields that just started to attract scientific
attention, such as integrating medical databases with other biological knowledge for disease
gene discovery.

The structure of the thesis reflects the workflow I intend to show: Chapter [f is this introduc-
tion. Chapter P describes the Electronic Health Records and the data rich medical databases,
and the challenges working with such data poses. Paper I shows an integrative analysis of a
medical database, and lays ground for exploring disease causality in the next chapters. Paper II
is a brief review on secondary use of medical records. Chapter [§| describes the use of protein
interaction data for creating the human interactome, and how it was put together with disease
gene information, tissue resolution, and gene expression levels to understand the causes of tis-
sue specificity of diseases (Paper III), and combined with spatio-temporal resolution of gene
expression for understanding organ development (Paper IV). Chapter [ dwells into external
causes for disease, and explores chemical-protein and chemical-disease associations. Paper V
integrates toxicogenomics data for drugs and environmental compounds, and protein interac-

tion data, to identify new molecular targets for chemicals and linking them to disease. Paper
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VI describes a new server, ChemProt, a compilation of chemical-protein association resources

and protein-disease information.



Chapter

Electronic health care

2.1 FElectronic health records

The use of health information systems has increased substantially in the past few years, and there
has been a generalized adoption of electronic health records (EHR) in primary care. An EHR
is a repository of patient data in digital form, stored and exchanged securely, and accessible
by multiple authorized users. It contains retrospective, concurrent, and prospective informa-
tion and its primary purpose is to support continuing, efficient and quality integrated health
care [[§]]. The amount of knowledge contained in those records is potentially immense, and early
adoption studies have shown that EHRs facilitate searching and retrieval of patient data [{§].
With a multitude of data types aggregated under a single record, there is a current need to ad-
dress ethical and permission issues, and to develop tools and methodologies for gaining insight
into this wealth of information.

Implementation of these systems has posed challenges in developing the appropriate data
warchouses to store them. Medical databases contain data in a variety of formats: images in the
form of X-ray images or scans, phenotypical description of diseases, medical histories, nurs-
ing notes, EKG signals, drug administration information, billing and administrative codes,
etc. Frequently, the data is not located in the same system, but is distributed amongst several
servers and locations, depending on the origin and nature of it. Information retrieval from these
systems is therefore a non-trivial task.

Even though EHR systems are designed to simplify the daily routines of clinicians, there are
downsides to their implementation. Adoption of electronic patient systems takes time and chal-
lenges experienced professionals to sacrifice some flexibility, which is inherent to the manual
track-keeping used for decades [7]. The information contained within EHRs draws attention
towards new research areas, opening up new perspectives and directly supporting medical ad-
vances. Acknowledgement of theses facts might allow the widespread use of electronic health
records and apply them for strategic management decisions and clinical research.

Implementation and usage

Health information systems' implementation has been a high priority in several countries for

the past decade [§]. As numerous hospitals adopted such systems, there was an increased aware-
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2. ELECTRONIC HEALTH CARE

ness towards the lack of integration between the different systems implemented. Many vendors
developed their own user interfaces and models for data storage, and used different informa-
tion representations and technology platforms, creating additional challenges for data sharing
and re-using information across different sources. Several groups have now started collabo-
rative efforts towards data integration of electronic health records, such as CEN, HL7 and
OpenEHR [9--11]. In Denmark, after a widespread adoption of the first EHR systems, there
has been a continuous effort towards cross-platform integration [x2]].

Different systems are used depending on how the health system is organized within one
country [[[3]. Generally these systems are implemented in primary care, the office of a general
practitioner; secondary care, or specialist upon referral by the primary care practitioner; and ter-
tiary care in a major hospital. Some systems are implemented for the patient's self-monitoring
at home [[14].

EHRs are used not only by doctors, but also by different health care professionals and ad-

ministrative staff. Additionally, patients or their parents might use the system at some point

for data entry [[(3]. Table p-1_on the facing pagd describes them in detail and illustrates the

different components of the system they use.

Data types

As mentioned before, each EHR is an aggregate of different data sources and formats. EHRs
include both unstructured free text and coded data; the later one using a number of different
terminologies, such as the International Classification of Diseases (ICD)! codes for diagnoses,
Anatomical Therapeutic Chemical Classification Index (ATC)? codes for medication, and the
Systematized Nomenclature of Medicine (Snomed)? for coding pathological findings. Patient
outcomes can also be described by statements such as descriptions of pain. Inclusion of other
types of data is dependent on where the system is being developed, and who will be the main
user of the system. For example, in a radiology ward it is useful to include X-ray pictures and
radiology reports in the patient's electronic record, while these are not required for a psychiatry
ward.

Secondary use

Besides the obvious main use for EHRs, there are numerous other activities that have interest
in using these records. Analysis, research, quality and safety measurement, public health, pay-
ment, provider certification and accreditation, marketing, and general business applications,
might re-use the whole or parts of the patient's journals and extract information for their own
purposes [ 5]. The issue of secondary use of EHRs is reviewed in detail in Paper II, A Compari-
son of Several Key Information Visualization Systems for Secondary Use of Electronic Health Record
Content.

Figure p.7 illustrates current and future usage of EHRs. Many existing systems have im-

plemented tools for medical documentation, order entry and results review. Data extraction

Thttp://www.who.int/classifications/icd/en/
Zhttp://www.whocc.no/atc
3http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
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2.1. Electronic health records

User Component of EHR

Nurse Daily charting; medication administra-
tion; physical assessment; admission nurs-
ing note; nursing care plan

Physician Referral; present complaint, e.g. symp-
toms; past medical history; life style; phys-
ical examination; diagnoses; tests; proce-
dures; treatment; medication; discharge

Patient History; diaries; test

Parents History

Secretarial staff

Pharmacists

Multiprofessional: nurse; physician; labo-
ratory stafl; radiology staff; clerk or admin-
istrative staff; pharmacy personnel; health
care professionals

Procedures; problems; diagnoses; findings;

immunization
Medication

Referral; present complaint, e.g. symp-
toms; past medical history; life style; phys-
ical examination; diagnoses; tests; proce-
dures; treatment; medication; discharge;

administration of medication; admission

nursing note; daily charting

Table 2.1: Users of EHR systems and used data components. Table adapted from Hayrinen et al. [13]]

has been limited to building medical knowledge bases for decision monitoring and decision
support (e.g. [17], and several others). Current trends are moving towards using the wealth
of information present in these records to support clinical research and clinical trial support,
and using data mining and complex data extraction procedures for further enhancing medical
knowledge bases [14]. Several large projects have begun tackling translational research, com-
bining many different data sources and further improving the EHRs richness (e.g. the i2b2
project [18]).

It is important to mention the protection of the privacy of patient data. When retrieving
records from the protected clinical health care system for purposes of secondary use, we have to
take into account that the data needs to go through an anonymization step, making sure most
of the sensitive data is filtered out [[1d, 2d].
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Figure 2.1: Using EHRs: major areas of past (upper part) and future research areas (lower part) [£6].

2.2 Extracting information from electronic health records

Health information systems contain many different data types, combining both structured in-
formation and unstructured free text, the latter one making up for the majority of the electronic
records. Biomedical and clinical language pose additional challenges to working with literary
texts. They frequently use domain specific terminology, acronyms, and polysemic words. Of-
ten these contain different spellings or typographical variants, and use different writing styles.
Furthermore, clinical text adds extra complexity due to its narrative nature.

Clinical texts are those written by clinicians in the clinical setting. These can cover patients
description, their diseases, examination findings, personal and social histories, and all types of
comments and observations that are useful upon the examination procedure. Clinical text is
mostly composed of narratives, ranging from very short (e.g. “The patient ECG is normal.”),
to very long and descriptive entries (e.g. a detailed medical examination). Frequently, these
narratives are different from those occurring in biomedical literature, being mostly ungram-
matical and composed of short, often abbreviated messages. Sometimes the texts are dictated
into the computer, or written only for documentation purposes. Because the narratives are not
intended to be reviewed or to be used outside of the setting of the clinical environment, they
are often plagued with abbreviations, acronyms, and jargon, many of them specific to the doc-
tor or practice in question. Ambiguity is often high, and there is a frequent lack of consistency
on the wording used [21]. If the written patient documentation is not monitored by a built-in
spellchecker, the resulting texts will contain a high amount of misspelling.



2.2. Extracting information from electronic health records

Structured data

Extracting information from the structured parts of the EHR is not a trivial task; the records
contain missing and incomplete data, and often have to be complemented with the unstruc-
tured text for establishing meaningful analyses. Structured data entry is a tedious process and
often doctors only input what is required for billing purposes. Furthermore, this type of data
lacks the expressiveness of natural language, and is often complemented by the use of unstruc-
tured data. What could otherwise be a content rich data source is often hindered by these
drawbacks.

For the purpose of standardizing data input across clinical systems, and to map synonyms to
a same term, a number of clinical vocabularies have been consistently used. These are mainly

used for a number tasks, namely:
* Searching knowledge resources, and tagging;
* Supporting clinical practice analysis, quality measurement, and outcomes research;
* Providing data for clinical epidemiological analyses;
* Supporting payment processing and reimbursement;
* Identifying proper guidelines, paths, and trigger reminders in patient care.

When a clinician evaluates a patient, he or she starts the documentation using free text and
unstructured information, such as history and physical findings. As the clinician's evaluation
process continues, the unstructured data is transformed into more structured data, often linked
to billing and reimbursement. These claims-related structured data sets are primarily used for
structured billing, and may not be enough to capture clinical details. The most commonly used
terminology is the International Classification of Diseases (ICD), both in its version 9, in the
United states, and version 10, in Europe, Australia and New Zealand. For medication and drug
usage, the Anatomical Therapeutic Chemical Classification Index (ATC) codes are widespread.

Some EHR systems are currently implementing the Systematized Nomenclature of
Medicine—Clinical Terms (SNOMED-CT) ontology for recording test results and describ-
ing events that require a more fine-grained control over the nomenclature.

All of the terminologies used are organized in a somewhat hierarchical way, and can describe
diseases, or drugs, that target a specific system in the human body. For this reason they can
be extracted and used for epidemiology studies, or drug usage research. Paper I in Section p.3]
describes the use of ICD1o for stratifying patient cohorts and identifying disease correlations.

Text mining

Searching within free text can be performed in many of different ways. Depending on the
complexity of the query, and the type of information to be extracted, one can use from very
simple string matching methods to very complex machine learning algorithms.

Text mining and information extraction (IE) differ from information retrieval (IR) in the way
that the first two involve extracting predefined information from text, while the latter focus on
finding documents on large units of data. Examples of IR systems are search engines such as
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Google [22] or PubMed [23]. In simplified terms, Information Retrieval returns documents
while Information Extraction returns information or facts.

IR can be used to select documents to be analyzed, thus resulting in new associations between
documents. One such example of IR was described by Swanson [24], who found an association
between fish oil and Raynaud's syndrome by manually searching the literature, illustrated in
Figure p.2]. This hypothesis was later corroborated both experimentally and clinically.

Blood viscosity

7 Plaelet N
aggregability

Vascular reactivity

Raynaud’s
syndrome

ncreased
(and co-occurs)

Reduces
(and co-occurs)

Fish
oil

Raynaud’s

syndrome
Can reduce

Figure 2.2: Hypothesis advanced by Swanson (4], after IR from the literature. Swanson discovered that Raynaud's
patients had altered blood properties. By further exploring the literature, this time for articles about factors in-
fluencing the characteristics of blood disorders common in this syndrome, he found that fish oil appeared to be
an important topic. Later, his association was tested experimentally and in a clinical setting, and became the first
trial-and-error strategy for linking two previously unknown subjects.

IE is a sub-domain of Natural Language Processing (NLP). NLP research focuses on building
computational models to understand and interpret natural language. Named Entity Recogni-
tion (NER) is also important to mention, as a sub-field of information extraction, and refers
to the task of recognizing entities such as drugs, diseases, protein names, etc. in free text docu-
ments. NER systems can be rule-based, or can use machine learning approaches, which requires
large amounts of training corpora.

Text mining uses IE to discover and extract knowledge from unstructured data, and to de-
rive relationships between entities. Usually text mining comprises of three steps: information
retrieval, information extraction, and data mining (to find associations between the different
extracted pieces of information).

The paper in Section builds on the basic concepts of information retrieval, information
extraction and text mining. Here I have covered only the key concepts of the technology. More
details can be found in the works of Coben et al. [25)], Jensen et al. (2], and Ananiadou et
al. [27], and a further review on information extraction for the medical domain from Meystre
et al. [29].

The Sct. Hans database

For the purpose of Paper I, we worked with a database from the Sct. Hans Mental Health
Center, in Roskilde, Denmark. A total of 5543 patients were followed from 1998-2008, and
their records stored in an EHR database. 70% (4822) patients are from the Copenhagen area,
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61% of these are male. The average age is 30 years old. The records are a mix of structured
diagnose assignments of ICD10 codes, ATC codes for medication usage, patient care notes

from nurses and doctors, personal information, as well as admission and discharge summaries.
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Figure 2.3: Snapshot of the EHR system at the Sct. Hans Psychiatric Center, Roskilde, Denmark. On the top left

are the different types of notes a patient has been given, and on the right the free text notes that were written in
each entry.

Figure p.3] illustrates a snapshot of the user interface, currently used by medical staff in this
hospital to input patient data. Most systems are tailored to a specific application, or the medical
speciality they are used in. This poses challenges to the integration and data extraction process,
as no system is the same. In this particular case there is a much higher content of free text
in the record, in detriment of structured information, due to the fact that psychiatric practice
involves much longer sessions with patients. On average, the patients’ internment is also much
longer. Another noticeable aspect in this corpus are the discrepancies on the size of each entry,
depending on the physician who wrote the report.

The system does not have any data export feature. For Paper I, Using electronic patient records
to discover disease correlations and stratify patient coborts, the extraction was made using a dump
of the database's backend, and the fields were manually cross-referenced based on exploration
of the front-end. Figure .4 shows the contents of the database. About 85% of the patients had
textual records, but less than half had coded diagnosis. ATC codes were only present in 25% of
the patients.

The lack of consistent structured data throughout the corpus motivated the use of text mining
from unstructured free text, capturing additional medical terms to complement existing ones.
In the next Section, the analyses conducted on this data for patient stratification and disease

co-occurrence exploration are shown.

II
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Figure 2.4: Contents of the Sct. Hans database. There are in total 5543 patients. Of these, 4758 have textual records,
2782 have some kind of ICD10 code for diagnosis, and 1346 have drug usage ATC codes.
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Abstract

Electronic patient records remain a rather unexplored, but potentially rich data
source for discovering correlations between diseases. We describe a general approach for
gathering phenotypic descriptions of patients from medical records in a systematic and
non-cohort dependent manner. By extracting phenotype information from the free-text
in such records we demonstrate that we can extend the information contained in the
structured record data, and use it for producing fine-grained patient stratification and
disease co-occurrence statistics. The approach uses a dictionary based on the International
Classification of Disease ontology and is therefore in principle language independent. As
a use case we show how records from a Danish psychiatric hospital lead to the identi-
fication of disease correlations, which subsequently can be mapped to systems biology
frameworks.

Introduction

The most important prerequisites for personalized medicine are meaningful patient stratifica-
tion and a detailed understanding of how diseases, clinical phenotypes, and genotypic variation
correlate. Ultimately this depends on our ability to quantify and compare phenotypic descrip-
tions of diseases and symptoms, taking past treatment and disease history into account. For that
we need access to, and integration of clinical data, which is exactly what the recent introduction
of Electronic Patient Records (EPR) in modern healthcare promises to deliver [29--33].

EPR systems document patient treatment and care over time. They comprise different types
of structured and unstructured data, ranging from coded diagnoses, ordinary physiological
measures, laboratory test results over medication prescriptions, and treatment plans, to free text
notes about disease, treatment and care [[3]. Structured EPR data (and registry data in general)
have known biases, in part related to reimbursement practice (hospitals are reimbursed based
on which diseases they report) and administrative tasks such as activity monitoring [34]. In-
completeness is another problem, since registry data will normally pertain strictly to procedures
and diagnoses relevant to the current hospitalization. In contrast, free text notes contain much
additional information, but in an inherently unstructured form [3]]. In this paper we show
that text mining can be used to augment the coded diagnoses and thus complement the infor-
mation stored in structured formats. This approach provides the means for a more fine-grained
phenotypic description of patients, which is comparable across cohorts, and goes far beyond
what is normally stored in public registries.

The growth in EPR systems and health registries is changing the focus of health informatics
towards the clinical research potential of the collected data [[[§]. Structured data from these
sources have previously been used to uncover patterns of disease and comorbidity [3§, 7], and
for patient recruitment and monitoring in clinical trials [38]. In unstructured health data, such
as in EPR texts, information extraction approaches, including Natural Language Processing
(NLP), have been used for diagnosis detection [39--i41], decision support [3 4], and medication
surveillance [42-44)]. These studies have been partially aided by tools like MetaMap [45] for
mapping medical texts to controlled vocabularies such as the Unified Medical Language System
(UMLS).

Independently of the research assisted by the information presented in the patient records,

several approaches have been developed to discover novel disease associations, either based on
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shared disease causing genes or on overlapping pathways [46--48]. Known disorder-gene as-
sociations, from available resources like OMIM, have been used to establish links between
diseases, thus creating a network of disorders [46]. Common to many of these approaches is
the extensive use of protein-protein interactions from large-scale proteomic studies. Linking
disease-gene information with the growing data present in EPR systems will allow for a better
understanding of disease etiology and mechanisms.

Here we describe a strategy for exploring data from EPR systems in the context of subsequent
systems biology analysis. By mining the free-text parts of the EPR from a psychiatric hospital
we are able to augment the disease information assigned in structured formats, such as ICD10
(Version 10 of the International Classification of Disease ontology) codes, and thus obtain a
much richer phenotype profile of each patient. Treating these profiles as phenotype vectors [[47]
in the controlled vocabulary space of the ICD 10 disease classification, we demonstrate how they
can be used to investigate disease co-morbidity and patient stratification, paving the way for
discovery of the underlying molecular level disease etiology in the form of overlapping genes
and pathways. A longer-term perspective is to also include genetic profiles of the individuals in

these data integration schemes, but this is not explored in the present paper.

Results and Discussion

We based our study on a corpus of 5,543 patient records from the Sct. Hans Hospital (the
largest Danish psychiatric hospital) collected in the period 1998 - 2008. For these records we
extracted all assigned ICD 10 codes from structured fields. Next we used a dictionary based on
the Danish translation of the ICD1o0 classification to retrieve medical terms from the patients’
free text entries in the corpus (see Materials and Methods). On average we found 9.5 ICD1o
associations in addition to the 1.5 assigned codes (see Supplementary Information in the Ap-
pendix). Rounding ICD10 codes to the third level we found 351 different assigned ICD10
codes and 554 different mined codes. In total, 674 different ICD10 level 3 codes (see Materi-
als and Methods) were represented in the corpus. Gathering all mined and assigned codes, we
created a Patient—ICD10 association matrix, by assigning each Patient—-ICD10 combination a
binary value indicating whether or not a given code was associated with a given patient. The
precision of our text mining was investigated by manually checking all 2724 mining hits for 48
patients (Table p.2)). The validation set covered 214 full level ICD10 codes, corresponding to
151 level 3 codes. A hit was considered correctly assigned when it was possible to infer a direct
clinical link between the term and the patient from the record context. We defined precision
in two ways: Incidence precision of all curated hits, and association precision, where an ICD10
code is considered correctly associated with a patient if it has at least one correct incidence. In
both cases we considered how the precision was distributed among the different chapters (see
SI). We found a total incidence precision of 87.78% and an association precision of 84.03%. The
333 false associations were further subdivided into categories with this distribution: Negations,
105; Wrong individual, 17; Delusion, 9; Putative, 40; Polysemic, 10; Patient information, 92;
Other, 60 (see SI).

15
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Incidence precision Association precision
(mining hits) (ICD10 codes)

Chapter ~ Correct  False  Precision Correct ~ False  Precision
1 7 10 41.18% 7 6 53.85%
1I o I 0.00% o I 0.00%
v 30 4 88.24% 17 4 80.95%
\% 486 20 96.05% 128 7 94.81%
VI 124 16 88.57% 46 9 83.64%
VII 19 13 59.38% 11 9 55.00%
X 26 11 70.27% 13 5 72.22%
X 78 11 87.64% 36 4 90.00%
XI 67 12 84.81% 19 2 90.48%
XII 73 10 87.95% 29 9 76.32%
XIIT 57 2 96.61% 17 2 89.47%
X1V 12 2 85.71% 6 1 85.71%
XVIII 1234 115 91.48% 252 53 82.62%
XIX 141 101 58.26% 36 8 81.82%
XX 4 o 100.00% 3 o 100.00%
XXI 33 5 86.84% 27 3 90.00%
All 2391 333 87.78% 647 123 84.03%

Table 2.2: Precision of text-mining associations. Precision is the number of true positives divided by the sum of
true and false positives. Incidence precision distinguishes every individual mining hits as either correct or false. In
association precision each ICD1o0 code is counted just once per patient and is considered correct if just one of the
incidences of the code with this patient is correct. The final row contains the precision over all chapters.

Co-morbidity

ICD1o is organized into 22 chapters according to disease areas (see Materials and Methods). To
discover the degree of co-morbidity between chapters, we constructed an ICD1o0 chapter net-
work (Figure p-sla and b). Based on which diseases belonging to a specific chapter each patient
has in the corpus, we calculated a similarity score between the different chapters, ranging be-
tween o (for the lowest co-morbidity), to 1 (highest co-morbidity), see Materials and Methods.
Codes for chapter V ‘Mental and behavioral disorders” account for over 80% of the assigned
codes given by physicians at Sct. Hans Hospital, while codes for chapter XXI ‘Factors influ-
encing health status and contact with health services’ have a frequency of around 7%. These
are also the two most correlated chapters. The strong correlation between mental disorders of
chapter V and the observational Z-diagnoses of chapter XXI is most likely explained by a large
ward in the hospital for forensic psychiatry, where patients are frequently admitted for mental
observation following a criminal offense.

When including both the assigned and the mined codes from the textual records we cap-
ture many symptomatic descriptions for diseases. As seen on Figure 1b, more than 35% of
all codes are pertaining to chapter XVIII ‘Symptoms, signs and abnormal clinical and labo-
ratory findings, not elsewhere classified’, e.g. general medical complaints, edema, back pain,
and elevated blood glucose. Chapter XIX ‘Injury, poisoning and certain other consequences of
external causes’, as well as chapter XVIII, exhibit a high correlation with chapter V. Assigned
codes are often restricted to the principal psychiatric illness and important for billing and social
purposes, not necessarily reflecting the actual psychiatric treatment and care, nor the somatic
disorders affecting the patient. For this reason, introducing the mined codes in the analysis
allowed capturing correlations that were previously impossible to find.

In our attempt to identify pairs of interesting unexpected co-morbidities, as well as general
trends of correlation, we investigated the ICD10 codes in patient space (columns in the patient-
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Figure 2.5: Disease Chapter Networks. ICD10 Chapters are nodes; links are correlations. Link weight represents
correlation strength between two chapters; node area represents the proportion of codes from that chapter in the
entire corpus. A. Network based only on the assigned codes for each patient. Most frequent chapter is chapter V
‘Mental and behavioral disorders” with a frequency of 81%. The strongest correlation is between chapters V and
XXI with a cosine similarity score of 0.45. Chapters IX, ‘Diseases of the circulatory system’ and IV ‘Endocrine,
nutritional and metabolic diseases’ have a score of 0.3. B. Full network containing both the assigned and mined
terms for all patients. Chapters V and XVIII have a frequency of 24% and 3 5% respectively, and have a score of 0.92.
After mining, ‘Diseases of the respiratory system’ - chapter X, and ‘Injury, poisoning and certain other consequences
of external causes’ - chapter XIX, now have a cosine similarity score of 0.6 and 0.78, respectively.
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ICD1o association matrix). We used two measures to rank the 226,801 possible pairs of the
674 ICD10 codes, according to their co-association, compared to what would be randomly
expected. Pairs were sorted based on p-values and a cut-off was imposed based on a co-morbidity
score and a false discovery rate of 1% (see Materials and Methods). The result is a list of 802
candidate ICD10 diagnostic pairs that occur more than twice as often as expected by random,
and that are statistically significant at a false discovery rate of 1% (Supplementary Table St1).

Using the co-morbidity score as a similarity measure we clustered all 674 ICD10 codes and
created a corresponding heatmap of the co-morbidity scores for all ICD1o0 pairs. Figure p.4
shows a truncated version of the entire heatmap, containing the scores of all the interactions
for the top ranking 100 ICD10 codes; i.e the top 100 codes found when sorting the list of
802 candidate pairs by their co-morbidity score. Figure p.4 illustrates the general ability of our
approach to capture correlations between different disorders. Several clusters of ICD10 codes
relating to the same anatomical area or type of disorder can be identified along the diagonal
of the heatmap. They range from trivial correlations, e.g. different arthritis disorders, to cor-
relations of cause and effect codes, e.g. stroke and mental/behavioral disorders, to social and
habitual correlations like drug abuse with liver diseases and HIV. Another interesting observa-
tion from figure 2 about the composition of the corpus is the lower than expected co-occurence
between the codes of the ‘mental and behavioral disorders’ cluster and the ‘drug abuse, liver
disease, HIV’ cluster, as indicated by the blue areas in the upper and lower corners. These are
very different groups of disorders that strongly stratify the patient corpus, and inspection of the
specific diagnoses indicate that the correlation reflects two of the primary causes for admittance
to Sct. Hans Hospital (i.e. two distinct clinical departments): psychiatric disorders caused by
stroke or brain injury, and mental illness accompanied by drug abuse.

To discriminate potentially interesting, novel candidate co-morbidities from the many triv-
ial ones, an experienced medical doctor manually inspected the candidate list of 802 pairs.
Trivial pairs are e.g., between two codes for essentially the same disease (e.g. Ex1 ‘Non-insulin-
dependent diabetes mellitus’ and R73 ‘Elevated blood glucose level’), or between trivial disease-
symptom pairs (e.g. N30 ‘Cystitis’ and R30 Pain associated with micturition’) or between pairs
of well-established correlations (e.g. E51 “Thiamine deficiency’ and Hs 5 ‘Nystagmus and other
irregular eye movements’). Pairs with surprising correlations with or without possible hypoth-
esis were flagged resulting in a list of 93 pairs. A full list of all the code-pairs analyzed can be
seen in the Supplementary Table S2.

Disease correlations may or may not have genetic causes. To identify a possible molecular ba-
sis for the flagged pairs, we extracted genes implicated in those particular diseases when a good
mapping from ICD10 to OMIM was possible (see Materials and Methods). We then created a
protein-protein interaction network by determining the first order interactions of those genes
in refined experimental proteomics data (see Materials and Methods). For each disease pair,
we searched for shared first order interactions connecting the two networks. Despite the dif-
ficulty of mapping the different terminologies and genes with this approach [34], the analysis
revealed several connected proteins which are novel in relation to the diseases used to generate
the networks. For example, we narrowed down an interesting case story between Alopecia (i.c.,
hair loss, ICD10 L65) and Migraine (ICD10 G43). We found that THRA, thyroid hormone
receptor, not previously associated with any of the two diseases, is a shared interaction partner
of Protein Hairless (HR, a putative single zinc finger transcription factor protein) involved in
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alopecia [49], and the Estrogen Recepror 1 (ESR1) associated with migraine [5d]. This may
suggest that these two discases share a similar molecular mechanism of action. Migraine and
alopecia occurred in 12 patients with a co-morbidity score of 1.92 and a p-value of 2.07x10-6.
Most of the associations of these two codes come from mining, and in these cases a physician
manually inspected their records to evaluate the clinical context. In two cases where the term
‘migraine’ was retrieved from a nursing note, a more correct clinical description would have
been ‘headache’. One patient did not suffer from hair loss but from a somatic delusion thereof.
Adjusting for those cases, the recalculated co-morbidity score is reduced to 0.4, while the recal-
culated p-value is 2.81x10-6. Of the remaining 9 patients with migraine and alopecia, six are
women aged 21-63 and three are men aged between 47 and 4.

The observed co-morbidity may reflect different side effects from medication [[s1--3]]; most
prominently seen with SSRIs (Selective Serotonin Re-uptake Inhibitors for treatment of depres-
sion) that have been associated with cutaneous reactions, including alopecia, and migraine [[s4].
Also, frequently prescribed oral contraceptives are associated with migraines (REF) [[55]]. In fact,
inspection of the nine co-morbidity cases, revealed that three patients were being treated with
SSRIs (with a possible link to hair loss mentioned in the medical notes), two patients were
administered oral contraceptives and one patient was treated with calcium antagonists and
anti-epileptic drugs

The co-morbidity may also have an etiological cause that relates to schizophrenia, the primary
disease of the patients. It has previously been shown that schizophrenia is associated with coeliac
disease, i.e. the highly under-diagnosed condition of gluten allergy [[56], which in turn has been
linked to both alopecia, and migraine; in fact the two latter conditions are now indications for
diagnostic work-up for Coeliac disease according to the recent official US guidelines [[57, [5§].

Patient stratification

In a specific hospital corpus of patients the most important level of stratification is generally
based on the primary diagnosis, or inclusion, which dictates treatment and care. The stratifica-
tion can also be very specific and based on lab results and tests for molecular markers, such as in
the case of hormone receptor variants in breast cancer [[59]. We were interested in determining
if the combined mined data could lead to a richer structure in the patient population, span-
ning a wider range of phenotypes, not typically considered when stratifying a specific corpus
by assigned codes.

In the patient-ICD1o0 association matrix each patient is represented as a vector of associated
ICD1o0 codes in the space of all the 674 ICD10 codes. Based on these vectors we grouped
patients into clusters according to the similarity of their phenotypes. Associations of ICD10
codes to patients were not treated as binary, but were weighted using TF-IDF (see Materials and
Methods). Figure B.7 shows members of the largest clusters resulting from a clustering based on
Cosine-Similarity of patients ICD10 vectors (see Materials and Methods). In all but one cluster
(s4) one ICD10 code stands out as the most discriminating code. The TE-IDF value for this
code constitutes up to 18-40% of the sum of all TF-IDF values in the vector. Furthermore, no
two clusters share the same main code. The ICD1o characteristics of each cluster are shown
in Figure p.7b. From this figure, we see that Schizophrenia has a strong component in several
clusters, primarily located in the top left of the network. As pictured, many of these clusters
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Figure 2.7: Patient network. (A) Nodes represent 1497 patients from 26 clusters. Edges are correlations between
patients. Node color denotes cluster membership. (B) Heatmap showing ICD 10 composition of each cluster. Values
are the fraction of the cluster ICD10 vector covered by this code. Shown are only the 26 ICD10 codes that are most
distinguishing codes for a cluster. The heatmap columns match the network clusters in a counter clockwise direction
starting at cluster 27.
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are also characterized by various codes for alcohol/drug use, indicating the type of abuse as a
good sub-stratification of schizophrenia. Similarly, alcohol seems to be a common denominator
for clusters 48-54, which are primarily characterized by depressive disorders, anxiety disorders,
and other personality disorders. What is also interesting is that many patients fall into clusters
characterized by somatic codes like diabetes and psoriasis, which have certainly not been the
initial reason for admittance to the hospital. This is largely attributable to data coming from
text mining (see Supplementary Table S3 in the Appendix).

Discussion

As EPR systems become the norm in modern health care, focus is naturally turned to exploring
this treasure trove of data for improving health care and research [6d]. Extracting the data is
a first step, and as EPR systems maintain the use of free text to complement structured data,
text-mining approaches are necessary for extracting data usable in further analyses.

The enrichment of existing structured patient data by text mining significantly expands phe-
notype profiles, both within the specific pathology of the corpus, but especially into other dis-
ease areas. We present one example of co-morbidity between two diseases that are very often not
coded in the record by the physician, but show up written in the patient journal and are later
picked up by mining. The enrichment from mining is also visible in our attempts to stratify
patients, where it shows potential for uncovering additional layers of the population structure.
More detailed stratification of patient cohorts could help improve population homogeneity
and signal strength in Genome Wide Association Studies, leading to stronger results in smaller
case-control studies.

The procedure described here represents, in our opinion, a practical non-hypothesis driven
approach for extracting valuable information from patient records where manual inspection
and ICD1o association would turn into an otherwise impossible task. Furthermore, we show
how this information can be used in researching disease co-morbidity and patient stratification
and how it can be mapped to the underlying systems biology revealing possible causes for the
observed correlations.

Materials and Methods
Patient Corpus

The patient population data was from collected from the Sct. Hans Mental Health Centre,
in Roskilde, Denmark. A total of 5543 patients, were followed from 1998-2008, and their
records stored in an EPR database. 70% (4822) patients are from the Copenhagen area, 61%
of these are male. The average age is 30 years old. The records are a mix of structured diagnose
assignments of ICD10 codes, ATC* codes for medication usage, patient care notes from nurses
and doctors, admission and personal information, etc. A corpus was created containing all text
entries for each patient that were verified and signed by a physician. In total, the corpus contains
text for 4765 patients. To each entry we assign an entry date, the note type, and the text. The
note type identifies the type of text entry, such as the epicrisis, discharge note, treatment note,

“http://www.whocc.no/atd
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nursing note etc. Each record contained approximately 25.000 words in free text. In addition,
we extracted all ICD10 codes assigned to patients that were stored in a structured format.

Data extraction

ICD1o associations were extracted from the free text entries of the patient records. The texts
were parsed (exact matching) against a dictionary based on the Danish translation of the WHO
International Classification of Diseases (ICD10), downloaded from the Danish national board
of health the 2% Nov 2009. ICD1o is divided into 22 chapters, and has a hierarchical structure
with increased specification of terms in each lower level. Each term is uniquely matched to code
of between 3 and 5 characters. Our dictionary contains all the Danish ICD1o terms, plus a
number of permutations of these, to reflect language usage rules [61]. The objective was to get as
many terms as possible for each ICD10 code. In addition, a blacklist was also created to remove
dubious and uninformative terms from the text. The final dictionary consisted of 53452 terms.
During parsing, candidate terms were tested for preceding negations or mention of family
members, which acted as disqualifiers. For the data analysis all codes were rounded up to the
third level for consistency and increased precision. Further information about the dictionary
generation rules, parsing and rounding is contained in the Supplementary Information text.

Chapter networks

For each disease we created a vector mapping its presence or absence from a patient record. This
resulted in 22 vectors for each disease chapter. The pair wise overlap between vectors was quan-
tified by calculating the cosine of the angle between normalized vector pairs [47]. The result is
a score between 0 and 1, mapping the co-morbidity value of each of the chapter pairs. We also
calculated the frequency of each chapter in relation to the total number of chapter assignments.
In Figure p.9, the roman numerals represent the different ICD10 chapter numbers: I, Certain
infectious and parasitic diseases; II, Neoplasms; III, Diseases of the blood and blood-forming
organs and certain disorders involving the immune mechanism; IV, Endocrine, nutritional and
metabolic diseases; V, Mental and behavioral disorders; VI, Diseases of the nervous system; VI,
Diseases of the eye and adnexa; VIII, Diseases of the ear and mastoid process; IX, Diseases of
the circulatory system; X, Diseases of the respiratory system; XI, Diseases of the digestive sys-
tem; XII, Diseases of the skin and subcutaneous tissue; XIII, Diseases of the musculoskeletal
system and connective tissue; XIV, Diseases of the genitourinary system; XV, Pregnancy, child-
birth and the puerperium; XVI, Certain conditions originating in the perinatal period; XVII,
Congenital malformations, deformations and chromosomal abnormalities; XVIII, Symptoms,
signs and abnormal clinical and laboratory findings, not elsewhere classified; XIX, Injury, poi-
soning and certain other consequences of external causes; XX, External causes of morbidity and
mortality; XXI, Factors influencing health status and contact with health services; XXII, Codes

for special purposes.

Co-morbidity ranking

For the purpose of exploring co-morbidity between ICD10 codes we used two measures to
rank the 226801 possible ((674*674-674)/2) pairs of different codes, according to how often
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they come together in patients, compared to what would be randomly expected assuming no
a-priori correlations. The two measures represent our desire to ensure statistical significance,
while focusing on pairs with a noticeably increased co-association.

First, for each pair of ICD10 codes A and B, the patient corpus is divided and counted in
the four categories: A & B, A NOT B, B NOT A and NOT A NOT B, according to their
association to A and B. Using this p-values are calculated using Fishers exact test, and the
pairs are sorted accordingly. We then filtered this list by imposing a cut-off value of 1.0 of a
co-morbidity score between diseases A and B defined as:

FExpt + 1 Niot

bs + 1 .
CSAB:ln2<OS+ )E ¢ — PATB

Where Obs is the observed number of ICD10 co-associations, and Expz is the expected
number. Expected overlaps are calculated based on the prevalence of each disease in the actual
corpus (n4 and np). To make the tendency to favour pairs of low prevalence ICD10 codes less
pronounced, a pseudo-count of 1 is added to nominator and denominator. Since we take log2
of this ratio, a cut-off value of 1.0 means we restrict our focus to pairs with a higher than two
fold (approximately) over co-association. This co-morbidity measure is very similar to the one
used by Hidalgo et al. [62].

Finally we used a Benjamini-Hockberg false discovery rate method on the ranked list to
correct for multiple testing. The p-values for all pairs are multiplied by the total number of pairs
(226801) and divided by the rank of the pair in the sorted list. A cut-off is then imposed where
the corrected p-value drops below 0.01. The result is a selection of 802 potentially interesting
candidate pairs, with a false discovery rate of 1 percent, from the total of 226801 pairs.

Creating gene lists from ICD10 codes

There is no direct mapping between ICD 10 codes and OMIM [63] record entries. Furthermore
the disease names used by ICD10 and OMIM are not identical, so there was a need to map
OMIM disease names into ICD10 codes. Work has been done mapping the online database
and ICD9 codes, a previous version of the ICD [36]. We used the ICD10 to ICD9 Gen-
eral Equivalence Mapping available online from CMS (http://www.cms.gov/ICD10/) to map
the ICD codes to their previous version. With the mappings in place, OMIM was parsed for
phenotypic descriptions of defects in genes, as described in Lage e al. [47]. From the OMIM
records, the clinical synopsis field was extracted for retrieving phenotypic descriptions regarding
a certain disease. Additional information was retrieved from the morbid map tables, a map of
disorders included in OMIM that have the syndrome name, chromosomal localization, and
name of the disease causing gene. A manual curation step by a medical doctor ensured that
each ICD1o code to be included in the analysis was assigned the correct OMIM entries.

Genetic overlaps between ICD10 pairs

For each disease, a network was generated by taking the disease causing genes extracted from
OMIM and determining their first order interactions in a human protein interaction network
of refined experimental proteomics data. This procedure is described in detail by Lage et al. [47,
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64, 65]]. For determining genetic overlaps between two ICD10 diseases, we take their networks
and identify those genes which are shared and have first order interactions with the seed genes.
After a round of automatic overlap detection, we manually curated the results of the different
steps in the pipeline, in order to detect erroneous assignments of disease names or genes, and
reran the overlap detection in those cases. For those pairs where overlapping protein-protein
interaction networks indicate underlying biological evidence, a final round of validation was
done by manually checking if the binary associations from text mining of patients to the ICD10
codes were correct. Based on the corrected data, new p-values were calculated by Fishers exact
test, and it was controlled that the p-value remained lower than the lowest p-value of the list
of 802 candidates. The candidate genes found to overlap in the two disease networks were
scored using the enrichment of OMIM seed genes in their first order interaction network, in
a similar procedure as the one used by Lage ez al., 2010 [64]. The score assigned to a candidate
was the hyper geometric p value of observing the amount of interactions to the OMIM set out
of all the interaction partners of the candidate. Our example of THRA has a total of seventeen
interaction partners in the network, and two are with the input genes (HR and ESR1), having
a p-value of 1.17x10-3.

Patient stratification

By looking at the Patient-ICD10 matrix by rows, or patient vectors in ICD10 space, we can
stratify patients based on the codes they have. Instead of a binary association of a given code
to a given patient, we weighed the significance of icd10 occurrences using the term frequency
— inverse document frequency measure (TF-IDF). TE-IDF rewards high code frequency in
the individual record, and penalizes high prevalence across the corpus. As a patient-patient
stratification measure, we used the cosine similarity CS [l47] to calculate the cosine of the angle
between all pairs of vectors. We included only patients with at least 3 associated codes, and
exclude a number of trivial/symptom codes (e.g. pain, coughing, itching). A total of 2584
patients were found to have at least 3 associated codes. We used 1-CS as a distance measure
and calculated average linkage clustering to divide patients into clusters. Manual inspection of
the clustering dendrogram led us to cut the tree ata CS value of 0.6, which created a total of 307
clusters. 26 clusters contained 25 or more members, accounting for a total of 1800 patients.
Taking all edges with CS greater than 0.6 between these patients, the network in Figure 3a
of 1497 patients was created. The network layout is based purely on an edge weighted layout
algorithm. In order to investigate the clinical characteristics of each cluster, we concatenated
the assigned and mined data for all members of a cluster, and calculated a new TF-IDF code
vector for the entire cluster.
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Abstract

An overview is provided of six information visualization systems designed specifi-
cally for gaining an overview of electronic health records (EHR). The systems discussed
all make use of timelines: Lifelines, Lifelines2, KNAVE II, CLEF Visual Navigator, Time-
line, and AsbruView. With the exception of Lifelines2, the main user groups targeted are
physicians involved in direct patient care. Little attention has been paid towards sup-
porting true secondary use of EHR contents, for activities such as assessing quality of
care, patient health and safety monitoring, and clinical trial recruitment. Future work
on such systems needs to address the complexity of EHR data, missing and incomplete
information, and difficulties in displaying data with differing levels of granularity.

Introduction

This paper provides an overview of several information visualization (infovis) systems that have
been built for exploring abstracted information from Electronic Health Records (EHR). EHRs
are systems that are used to document care of patients. The records can include a wide range of
data and information, including medications prescribed and administered, immunization his-
tory, laboratory test results, allergies, radiology images, treatment plans, and care notes. Cur-
rently, most EHR systems implemented are proprietary and highly customized when used by
larger care institutions.

It is usually the case that only clinicians and other healthcare professionals with direct re-
sponsibility for providing care have access to patient data. The suggestion of secondary use of
health data is not new and has been handled separately from the issue of creating user inter-
faces and visualizations. Safran et al. [ §]] discuss the purpose of clinical data repositories in their
white paper and point towards the goal of a national framework for the secondary use of health
data in the U.S. According to their definition, secondary use includes activities such as analysis,
research, quality and safety measurement, public health, payment, provider certification and
accreditation, marketing, and general business applications, while at the same time taking into
account the ethical, political, technical and social implications of such re-use. De Lusignan and
van Weel [66] highlight the challenges of making use of clinical data for research, stating, “The
available research methods for working with large data sets are limited; it is difficult to infer
meaning from data; there is a rapid pace of change in both medicine and technology; and inte-
grating data without reliable unique identifiers is difficult.”. Prokosch and Ganslandt [16] have
recently summarized the latest advances in enabling clinical data re-use for research purposes.
They identify as key challenges the establishment of comprehensive clinical data repositories,
the establishment of professional IT infrastructure to support clinical data capture, and the
integration of medical record systems and clinical trial databases. As discussed in these articles,
aggregated, abstracted and manipulable information is underutilized and hard to come by.

The emerging field of Visual Analytics [67] is relevant to this review. This field is focusing
on combining related research areas such as visualization, data mining and statistics to handle
large and heterogeneous volumes of data, such as EHR. The systems we encountered are inte-
grating human judgment with automated analysis, suggesting that future work will be related
to handling massive amounts of data that contains missing elements --- including the results

of textual analysis of records content.
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Purpose

Our motivation for creating this overview is to compare and discuss some of the available
information visualization/visual analytics tools and how are these used for secondary, i.e. for
purposes other than direct patient care. This is a first step towards infrastructure and coordi-
nating efforts to produce systems that are based on standard input formats, and meet the needs
of specifically defined users. The reader of this overview is most likely working on information
extraction, temporal abstraction, and summarizing EHRs.

Source Search Keywords

Pubmed visualization
health records
Medical Records Systems, Computerized
Computer Graphics
User-Computer Interface

ACM DL electronic health records or medical record
information visualization or visualization
healthcare or health care
user interface

IEEE DL visualization
medical records

Google Scholar electronic medical records or EHR
information visualization

visual analytics

Table 2.3: Keywords searched.

Scope

The review is non-systematic. We didn't expect to find large numbers of articles, since this is a
relatively narrow area of interest. The search was confined to user interfaces and visualizations
for EHR data, we searched pubmed, ACM digital library, IEEE library, and Google Scholar,
using basic keywords and checked references in found articles. We also looked for papers on
work we had read or known about previously from conferences or other sources. The literature
search covered articles in English only. Keywords used are listed in Table p-3.

Systems

In this section we give an overview of the state-of-the-art systems related to visualization of
temporal information in EHRs. Our intention is to cover broad areas of application including
representation of medical histories, visual data query and aggregation, generation of temporal
abstractions and visualization of treatment plans. Due to the limitations in space, we focus
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only on the most representative systems, which feature interesting and potentially reusable
visualization techniques.

Lifelines

LifeLines uses a timeline visualization technique to represent personal histories, medical records
and other types on biographical data [68]. In LifeLines, horizontal bars are used to depict tem-
poral duration and location of events on a horizontal time axis. Similar events are organized
into facets, which can be expanded and collapsed to provide increasing or decreasing level of
detail. Color notations and line thickness are used to indicate the importance and relationship
of events. To handle regions with high data density, LifeLines provides zooming functional-
ity allowing users to compress and stretch the time scale at any location. Additional content
(e.g., multimedia) can be added in a linked fashion. Authors apply LifeLines in the analysis of
complex patient medical records to visualize temporal relationships between treatments, con-

sultations, disorders, prescriptions, hospitalizations and other events.

Lifelines2

LifeLines2 [69] is an extension of LifeLines, allowing the user to analyze records from multi-
ple patients at a time. The system facilitates comparative visualization of records by means of
aligning, filtering and sorting operations. By aligning patient records on some common ref-
erence event (e.g., the first heart attack), users can easily spot co-occurring and neighboring
events. Ranking and filtering operations complement alignment by interactively reordering or
narrowing the set of records to suit a user's changing focus. The system proved to be particu-
larly suitable for observational research, where researchers analyze data from different studies
in order to better understand health problems or study the effect of treatments, and in find-
ing patients for clinical trials. Evaluation studies showed that the system significantly simplifies
typical analytical tasks and that medical specialists can quickly learn the interface. LifeLines2
is currently used to display EHR data provided by the Informatics for Integrating Biology &
the Bedside (i2b2) Project [8].

While in LifeLines2 the main focus is on visualizing temporal ordering of events, Wang ez
al. [7d] emphasizes practical need in viewing multiple records as an aggregate in order to study
frequency of event data over time. For instance, a user might be interested to analyze blood
pressure of all patients who have had an open-heart surgery within 3 months of their first
heart attack. As a solution, authors complement LifeLines2 framework with a new visualization
technique, called temporal summaries, which represents distributional trends of events over a
set of records in a histogram-like chart. Furthermore, the system allows splitting the whole
dataset of records into multiple subsets and use temporal summaries to compare event patterns

between these groups.

CLEF

Hallet [71] proposes a visualization architecture for browsing medical histories, which inte-
grates visual navigation tools and automatically generated textual summaries. While the graph-
ical interface facilitates interactive navigation, textual descriptions can, in addition, convey
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Figure 2.8: The Lifelines2 main window, with focus on timelines.

complex temporal information and display details that would otherwise be too complex for
visualization components. Within the system, the patient's medical history is represented as a
network of semantically and temporally organized events, which serves as an input for visual-
ization and natural language generation components. The visual navigator depicts a high level
overview of a patient's medical history by plotting events along three parallel timelines, corre-
sponding to diagnoses, treatments and investigations. In addition to zooming time scale and
detail-on-demand functionality, the navigator provides interactive visualization of semantical
relationships between events (e.g., caused-by, has-locus, indicated-by, etc.). Having different
features from the LifeLines interface, the navigator also allows the user to visualize numerical
data (e.g., results of blood tests) by plotting results of measurements on separate line charts.
Natural language generation is used for two purposes: 1) to create customized textual reports
for printing or exchange purposes and 2) as a support tool for the visual navigator, to enable
better description of complex events and relationships between them.

KNAVE-II

KNAVE-II [72]] is an interface enabling knowledge-based visualization and interactive explo-
ration of time-oriented data at different levels of temporal abstractions (e.g., abstraction of
periods of bone marrow toxicity from raw individual hematological data). Users can navigate
through the links of a semantic network while simultaneously navigating visually through mul-
tiple degrees of temporal abstraction of the dataset under observation. The evaluation results
have shown that users of KNAVE-II were able to perform queries both faster and more accu-
rately than with other standard tools.
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Figure 2.9: The Knave-II system.

The TimeLine system [f73]] is a problem-centric temporal visualization of patient records. The

contents of the EHR are integrated, reorganized, and displayed within the user interface (UI)

along a timeline. It is similar to Lifelines in the way that the different elements of the EHR

are grouped along the y-axis: imaging, reports, lab tests, etc are collapsible categories. However,

unlike Lifelines, the TimeLine system uses an XML data representation to handle data from

distributed, heterogeneous medical databases. Data elements that are displayed in the UT are

classified based on a knowledge base that guides both data inclusion rules and the visualization

metaphors used to render the data.

AsbruView

AsbruView [74] is a visualization and user interface on top of Asbru language [75] designed to

represent treatment procedures as structured time-oriented plans. AsbruView represents hierar-

chical and temporal relationships between treatment plans using a 3D visualization perspective.

Plans are aligned along the time axis and can be stacked on top of each other and laid out in

different ways. To simplify the interface, all graphic elements are represented by well-known

real world objects (e.g., track, traffic light, etc.). Also a 2D view is available which focuses on

temporal aspects of plans in greater detail. To depict uncertainty of future events, AsbruView

extends the timeline by using time annotation glyphs [76].
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Figure 2.10: Timeline system.

Comparisons

Infovis techniques are a way of augmenting human cognitive capabilities, to help humans find
patterns in large volumes of data. The systems described above target specific user types that
will benefit from the visualization methods. While some user interfaces were developed in close
dialog with medical practitioners, like Lifelines2 and Knave-II, others, such as the first Lifelines,
Clef and Asbruview have had only minimal input from their intended audience.

Users, Goals and Tasks

Most of the tools were directed at clinicians and clinical practice, although they were not always
developed in close relation to them. Table 2 gives an overview of intended users for each of the
named systems, and their proposed goals/tasks. From the user point of view, a number of tasks
and goals can be defined for each tool. Some are very specific and tend to care for niche usages,
while others provide more general visualization methods that can be applied to a number of
situations.

These systems were designed with input from only a few medical personnel involved in the
project. In general, articles we read concerning these systems that have a more guided develop-
ment process, i.e. closely related with physicians, have more specific goals and tasks, because
they were designed with these in mind. Visualizing data for decision-making and analyzing
treatment outcome is often a general goal in many of the tools developed in interaction with
medical staff [77--79]. There is an emphasis on pre-processed patient data, specifically numeric,
such as lab tests, heart rate, and blood pressure. Systems mainly try to help physicians answer
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System Users, Goals, Tasks

Lifelines Clinician
Patient care
Use EHR content in temporal time-based view
Lifelines2 Clinical researchers
Research
Compare patterns of events, detecting trends
CLEF Clinician, Biomedical researcher
Patient care
Visualize timelines, use NLP to extract complex temporal
data, aggregate numerical data
KNAVE-II Clinician
Patient care
Generation and exploration of context sensitive abstrac-
tions of temporal data
TimeLine Clinician
Patient care
Use EHR content in temporal time-based view, with ad-
ditional filters on data based on NLP techniques
AsbruView Clinician
Patient care
Medical therapy planning and execution

Table 2.4: Users, Goals, Tasks.

questions about correlations in the patient's data, and provide a means for supporting quick
decision-making making when combining several types of highly heterogeneous data. Physi-
cians can follow a specific treatment plan and check the patient's physiological variables over
time. This also enables the practitioner to check the influence of certain variables in the treat-
ment process and change the protocol if needed. CLEE for example, allows the physician to
discover events during specific time spans, such as searching for past specific liver problems.
Lifelines2 is specifically geared towards research uses and towards answering complex queries.
In Lifelines2, a case study involved verifying the results of a clinical study with real-life EHR
data to see if clinical care data differ from the study results.

The systems we discuss have conducted evaluation studies as a part of the end-stages of devel-
opment. The Lifelines evaluations were conducted in another domain (use of pattern searching
related to monitoring graduate student progress), with limited interviews and input from ex-
perts in the medical domain. The KNAVE system conducted a crossover study with doctors,
comparing KVAVE with existing tools. TimeLine was evaluated following the development
of the interface by five radiologists- focusing on questions related to data integration and the

temporal display. AsbruView was evaluated using questionnaires sent to clinicians.

33



2. ELECTRONIC HEALTH CARE

34

Visualization Methods

The focus of this paper is on temporal visualization methods since this has been the primary
visualization type studied for aiding humans in organizing and exploring patterns in abstracted
EHR content. All the systems that are compared in this paper display some type of timeline
with time running from the left part the screen to the right, time being on the x-axis, and
categories of events along the y-axis. Various techniques for graphically representing specific
events are used (e.g. icons, shapes), AsbruView makes use of 3D, while all the others are flat
2D.

Infovis has been the keyword used to describe these systems, with the idea of present-
ing a method for human users (most often stated as being clinicians), to recognize patterns
and thereby amplify cognition [8d]. Other methods for recognizing patterns in EHR for sec-
ondary use are purely automated and conducted through data mining techniques. Bertini and
Lalanne [81] wrote about the complementary role of automatic data analysis and visualization
in knowledge discovery. They discuss visual analytics, an outgrowth of infovis that can be seen as
an integrated approach combining visualization, human factors, and data analysis. They suggest
4 categories for classifying approaches: Pure Visualization (VIS), Computationally-enhanced
Visualization (V++), Visually enhanced Mining (M++), and Integrated Visualization and Min-
ing (VM). In the systems we have compared, there is a spectrum of ideas about how to visualize
EHR contents, including movements towards enbanced or intelligence in the processing of the
underlying EHR data. In Lifelines2, the data visualized was obtained from anonymized EHRs
though cooperation with the i2b2 Project [1§]. The input form of the data is a simple 3-column
table containing ‘ID’, ‘Event Type’, and “Time’. Each ID can have multiple events happening
at various times. Lifelines2 allows sorting of the data so that records with the most incidents
of one type of event are shown at the top of the screen. This type of infovis relies on human
pattern recognition only and would be considered as VIS by Bertini and Lalanne [81]. In the
CLEF project, the CLEF Chronicle, which underlies the visualizations, is a semantic network
modeling of what happened to the patient, why, and how. Semantic relations are: causality,
reason, finding, and consequence. The types of events modeled are: problem, investigation,
and treatment. The CLEF Visual Navigator might be considered as V++, computationally en-
hanced visualization because some sort of automated computation supports the visualization.
In CLEE the visual display is “enhanced with visual techniques for highlighting relationships
between events on the timeline.” None of the systems so far that we have seen, would qual-
ify as visually enbanced mining or integrated visualization and mining. Table .| provides a full
overview for all systems reviewed.

The papers we have read that cover EHR visualization, as seen in the systems presented,
express the complexity of abstracted EHR data. Missing and inconsistent data, dealing with
hierarchical data, and problems with granularity are all concerns that become readily apparent
through attempting to build infovis systems. Wang [69] summed it up best “Clinical data
tend to be messy with aspects that become only obvious when the data is visualized. The same
heart actack might be recorded three times in three days (by the emergency room physician,
a cardiologist, and a clerk from the billing office) and it can be hard to differentiate it from
3 separate events. Even if medical event information is carefully recorded at the time of the

doctor visit or during a hospitalization, the time stamp is usually inaccurate by nature.” Future
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System Category Notes
Lifelines VIS
Lifelines 2 VIS
CLEF Vit automated generation of summaries
semantic network of EHR record events
KNAVE-II Vit semantic (ontology-based) navigation and exploration of

the data
knowledge base is used to interpret raw data
TimeLine Vst data mapping and reorganization
content-based techniques to elucidate predominant sub-

ject of reports for classification

AsbruView VIS

Table 2.5: Visual Analytics of Systems using the classification from Bertini and Lalanne [81]].

work on visualizations needs to adequately address the complexity of the data rather than work
with test data that is too simplistic.

Text Mining Tasks

All mentioned systems, except the CLEF and TimeLine, operate with readily available lists of
type- and time-tagged events. However, clinical records are often stored in textual form what
makes them inaccessible for machine processing. Text mining techniques need to be applied to
automatically transform textual data into structured, normalized form. Key tasks involve event
extraction, classification and normalization.

The CLEF system uses an advanced information extraction engine to identify pre-defined
classes of entities (e.g. diseases, investigations, problems, drugs, etc.) and semantic relationships
between them (e.g. investigation indicates problem) in natural language texts. The information
extraction process involves lexical and terminological analysis, syntactic and semantic analysis,
and discourse analysis. To address the complexity of medical language, the system makes use of
language resources including the Unified Medical Language System and the Gene Ontology.
Extracted information is stored in templates, which can be queued or used to generate textual
summaries. The TimeLine system makes use of both textual contents of the EHR as well as
numerical data and codes. An NLP-based system is used in conjunction with the TimeLine
UL, for example, performing section analysis in radiology reports to determine whether specific

subsections exist within the reports that are related to certain medical problems [[73].

Conclusions

The infovis systems analyzed allow secondary use of EHR content data especially aimed at
clinicians documenting patient care. All of them are focused on visualizing temporal data in a
timeline, while displaying specific events from the patient data.
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Although directed at medical practitioners in their daily patient care routine, they were not
always developed with user feedback. Evaluation of the different tools was often based on sit-
uations outside of the clinical setting, and might not reflect reality. A more intimate dialog
with clinicians would benefit the creation of targeted systems addressing specific needs of the
medical community.

The overall goal of these tools is to present users temporal information contained in a record,
improving their ability to recognize patterns for knowledge discovery and following treatment.
They introduce simple visualization tools, but some include automated computational en-
hancements supporting it.

EHR contain missing and inconsistent data, which is in general messy. Due to the complexity
of the underlying data, future work needs to address these intricacies rather than using simplistic
approaches.

Acknowledgments

We would like to thank Nordforsk and the Nordic Council of Ministers for the funding of our
research network HEXAnord - Health text Analysis network in the Nordic and Baltic countries.
This work was partially supported by a grant from the Villum Kann Rasmussen fund.



Chapter

Disease gene finding

ASED on the hypothesis that diseases are an effect of disrupted functional networks which
B regulate the many systems in the human body, this chapter introduces some of the tools
used to gain further insight into the underlying complex interactions of many disease disease
etiologies.

Our work in many of the articles in this thesis is predicated on the following: if we consider
a functional module (complex) of interacting proteins, the phenotypic effect of disrupting any
single protein in the module will be very similar independently of which individual proteins
are disrupted. If this assumption generally holds true, then protein interaction data can be used
for discovering novel proteins related to a disease just by having a set of candidate proteins and
reliable functional modules of the disease. For this purpose we have constructed an inferred
human protein interaction network, described in Section .1 This network was used in most
of the analyses in this thesis.

In the following sections I will briefly introduce the human interactome, and how it can be
used for disease gene finding. The CBS in-house inferred human protein interaction network
is described, and the data underlying explained.

In the paper entitled A large-scale analysis of tissue-specific pathology and gene expression of hu-
man disease genes and complexes, we analyze the tissue specificity of disease genes and complexes.
In this integrative approach we systematically intersect pathologies, tissues, protein complexes
and gene expression to interpret the underlying causes of tissue-specific pathology on several
layers of cellular organization. We used text mining to map disease phenotypes to tissues, while
OMIM [63] and Pubmed were used to map disease phenotypes to genes. Gene complexes
were mapped to tissues using gene expression array data. The resulting list of generated dis-
ease complexes is also used in Paper VI, described in Section [4.3 of the next chapter. The next
manuscript, entitled Dissecting spatio-temporal protein networks driving human heart develop-
ment and related disorders, combines phenotypic information from specific knockout mutants
in genes leading to heart pathologies, with protein interaction data, in order to explore the
systems biology driving organ development.
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3.1 The human interactome

Proteins do not act as isolated units in the human body. They interact with each other, and these
physical interactions are a strong indication of functional association [82]]. These interactions
allow them to co-operate and perform vital cellular functions, working together in functional
modules. Furthermore, transcripts from those genes associated with similar disorders, show a
higher likelihood of having physical interactions between them [(@]. If this holds true, then
failure of a single component in the network, e.g. due to loss of functionality stemming from
mutation, will render the entire module dysfunctional, and result in similar disease phenotypes.

Protein-protein interaction networks (PPIs), or interactomes, are then an interesting data
type to be included in a workflow for disease gene finding, and have proved to be an important
resource for prediction of disease genes [47, B3, B4]. Despite the advances of the technology
driving large scale proteomics experiments, there are reports of a high number of false positives,
and the majority of the experiments are performed in model organisms. In order to fully explore
this data, we devised an approach to integrate PPIs across several organisms, and to remove false

positives based on a confidence score.

Estimating the size of the interactome

The size of an organism's interactome has been suggested to correlate better with the biological
complexity of the organism, rather than genome size [85]. Recent studies estimate that the
human interactome contains approximately 130,000 interactions, most of them unmapped,
and that the fraction of those identified up to now represents 8% of the full interactome [§4].
This statement comes to contradict earlier estimates by Stumpf et al., sizing the interactome with
650,000 interactions [85]. Similar estimates were reported during the ongoing efforts of the
Human Genome Project, although after sequencing the number of genes turned out to be much
lower than expected. Venkatesan et al. [86] suggest that the ambiguity concerning the size of the
human interactome is due to unresolved differentiation between sets of protein pairs that can
interact (biophysical interactions) and do interact (biological interactions). Furthermore, there
are suggestions that high-throughput yeast two-hybrid (Y2H) interactions for human proteins
are more precise than literature-curated interactions supported by a single publication [B87].

Protein interaction data

Physical protein interactions are mainly screened for in large scale experiments using one of
two common methods: yeast-2-hybrid (Y2H) approaches, or affinity purification followed by
mass spectrometry (AP/MS). Both are reported to be of high quality, but of different and com-
plementary nature [88]. Y2H is based on the activation of downstream reporter genes when
a transcription factor binds to an upstream activation site. If one protein is hybridized to the
DNA binding domain, and another protein to the activation domain of the same transcrip-
tion factor, physical interaction between these two proteins is detected by translational activity.
AP/MS is a two-step process: during the first step, purification, bait proteins are tagged with a
molecule or chemical, and then trapped in an affinity column together with all their interact-
ing partners (in a complex). During the second step, identification, the trapped complexes are
analyzed by a mass spectrometer, in order to identify all the components. Due to the nature of
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this method, all the constituents of the complex are revealed, but it's hard to say which of the
proteins in the complex actually interact physically.

Databases

As experimental data continues to flow in, a number of databases have emerged, combining text
mining and manual curation to extract the interactions from the literature. The main databases
are MINT [89]], BIND [pd], Grid [91], IntAct [p2l], DIP [93], and hprd [o4]. Their growth
in the past years is shown in Figure .1 There is little overlap between the different databases,
therefore in order to get the best coverage of PPI data, we need to integrate all of them.

Growth of proteinprotein interaction databases

data pairs
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Figure 3.1: Growth of the major protein-protein interaction databases based on the number of ppi pairs contained

(statistics and figure by Olga Rigina, olga@cbs.dtu.dk).

The InWeb

For the purpose of determining human interactions and maintaining high coverage of the hu-
man interactome, we devised a strategy to create an in-house human protein interaction net-
work (InWeb). The database was set up so that it can be updated on a regular basis, retrieving
darta from the available protein-protein databases.

The publicly available data of human protein interactions is low compared to the large num-
ber of interaction determined in model organisms, but it has been shown that many interac-
tions are conserved across different species [95]. Therefore it is a feasible strategy to import
cross-species interaction data from model organisms using orthology-based mappings to the
human interactome.

We downloaded and reformatted data from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [pG--H8], and MPact, in addition to the databases mentioned in Section 1. To map
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orthologous proteins between species, we used the InParanoid database [99]]. The resulting hu-
man inferred PPI network contains more than 510,000 unique interactions, between transcripts
of 22523 human genes'.

A reliability score is computer for all the interactions in the network, in order to filter out
spurious interactions, likely to be false positives. First, all the interactions are assigned a topology
score based on the characteristics of the network surrounding the interaction, as reported by
de Lichtenberg et al. [1od]; and a supporting evidence metric, taking into account the size of
the experiment that reported the interaction, and the number of separate experiments that
confirm it. The raw score for each interaction is then a product of the topological strength
and supporting evidence. Using the raw score, a calibration curve is fitted against the overlap
with a gold standard set of human interactions?, for converting it to a probabilistic confidence
score. A cutoff of 0.154 was applied to the network [l47], resulting in 124,759 high confidence
protein-protein interactions.

By combining multiple protein interaction resources, we were able to infer a human protein
interaction network supporting more than 500,000 interactions. Furthermore, by applying a
scoring scheme, we constructed a network of almost 125,000 high confidence interactions,
coming close to the suggested size of the human interactome [B4]. Integration from multi-
ple databases, and orthology-based transfer from model organisms, provides a more complete
picture of the human interactome, which can be used for subsequent analyses. In the follow-
ing articles, the InWeb assumes a central role in establishing previously unknown correlations
between proteins involved in different diseases.

!As of version 4.1, released July 2010.

?The gold standard is composed of trusted human protein-protein interactions from several sources: high
confidence small scale data (less than 5 human interactions per study) from MINT, BIND and IntAct, KEGG
enzymes involved in neighboring steps (ECrel) and KEGG annotated protein-protein interactions (PPrel), and
interactions from protein complexes, indirect complex reactions, and neighboring reactions from Reactome [[fo1].
The gold standard is composed of close to 45,000 non-redundant high-confidence interactions.
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Abstract

Heritable diseases are caused by germline mutations, which despite tissue-wide pres-
ence often lead to tissue-specific pathology. Here, we make a systematic analysis of the
link between tissue-specific gene expression and pathological manifestations in many hu-
man diseases and cancers. Diseases were systematically mapped to tissues they affect from
disease relevant literature in Medline to create a disease-tissue co-variation matrix of high-
confidence associations of more than 1,000 diseases to 73 tissues. By retrieving more than
2,000 known disease genes, and generating 1,500 disease-associated protein complexes,
we analyzed the differential expression of a gene or complex involved in a particular dis-
ease in the tissues affected by the disease, compared to non-affected tissues. When this
analysis was scaled to all diseases in our data set there is a significant tendency for dis-
ease genes and complexes to be overexpresed in the normal tissues where defects cause
pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues
from which the tumors emanate. We specifically identified a complex involved in XY sex
reversal that is testis-specific and downregulated in ovaries. We also identified complexes
in Parkinson disease, cardiomyopathies, and muscular dystrophy syndromes that are sim-
ilarly tissue specific. Our method represents a conceptual scaffold for organism spanning
analyses and reveals an extensive list of tissue-specific draft molecular pathways, both
known and unexpected or novel, that might be disrupted in disease.

Introduction

Pathology caused by defects in human genes is usually highly tissue-specific [46, fo2--fo4]. In
heritable diseases, this suggests that specific spatiotemporal functions of the implicated genes
are disrupted due to germline mutations. Research on tissue specificity of human diseases has
focused on the analysis of single discase genes in affected tissues [[fo3], [od], and although
it has been shown that disease genes generally tend to be expressed in a limited number of
tissues [46], it is still unclear in many cases how the tissue-specific expression patterns of disease
genes correlate with their pathological manifestations.

Proteomics approaches have established that most gene products exert their function as mem-
bers of one or more protein complexes [[07-111], and that mutations in different proteins
participating in the same complex, such as cellular machines, rigid structures, dynamic sig-
naling or metabolic networks, and post-translational modification systems, generally lead to
similar phenotypes [47, 108, [12]. A next logical step is to model entire disease complexes and
to analyze the link between tissue-specificity of the complexes and the pathological manifesta-
tions with which they are associated when defective. However, such efforts are hampered by
the lack of adequate coverage on experimental proteomic data in humans and of strategies for
systematically analyzing hundreds of diseases, and their related genes and protein complexes,
across multiple tissues of the human organism.

Here, we describe a strategy (Figure 5.2)) for systematically correlating pathological manifes-
tations of diseases with expression patterns of implicated genes and protein complexes across
many human tissues. For this analysis we created and validated a number of data sets including
more than 1,500 disease-associated protein complexes and to these added tissue and sub-cellular
localization. Then a method for systematically associating diseases to affected tissues was devel-

oped. Across all diseases in the Online Mendelian Inheritance in Man (OMIM) [63] database
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to which causative genes could be mapped, we analyze the correlation between tissue-specific
expression and pathological manifestation both at the cellular level of single disease genes and
for entire disease-associated protein complexes. Finally, we systematically compared the tissue-
specific pattern of expression and pathology in cancer initiating genes and complexes, causing

familial cancers, to that of non-cancer disease genes and complexes.

Results

Systematic generation of an atlas of disease-associated protein complexes with tissue

resolution

By mining the GeneCards [113] resource for genes associated with diseases, we generated a list
of 2,227 unique disease-related proteins. Similar to the method that we reported earlier [47],
an in silico approach for generating disease-associated protein complexes based on an inferred
human protein-protein interaction network was used (see SI and Figure S13). Following this
strategy, we generated 1,524 raw complexes comprising 45,662 unique interactions between
5,202 unique proteins. The quality of the complexes was validated by measures identical to the
ones reported in major experimental screens in S. cerevisiae, E. coli and H. sapiens (48, fo7--
111, [114], showing that the quality of our data matches the reproducibility, average probabilis-
tic interaction scores, accuracy, and coverage reported in these studies (see SI and Figure S2).
Finally, the complexes were mapped to tissues using the expression data from 73 non-diseased
tissues from the Novartis Research Foundation Gene Expression Database (GNF) [115]. The
expression level of a complex in a tissue was calculated by averaging over the expression levels
of all genes represented in the complex.

Mapping complexes to diseases

To map complexes to diseases we systematically identified the proteins that had been associ-
ated to each of the diseases mentioned in OMIM. This was done using the protein to OMIM
mapping displayed in GeneCards * database. We then measured the overlap between proteins
in complexes and proteins associated with the diseases and calculated the significance of this
overlap. Because a number of complexes are known to be involved in different diseases we
allowed for a complex to be associated with more than one disease. In total the 1,524 raw com-
plexes were mapped to 1,054 OMIM diseases. In the further text we refer to these as disease
complexes.

Disease-tissue association matrix

To our knowledge there exists no systematic mapping of diseases to affected tissues. We de-
termined the covariance of a disease with a tissue by identifying the number of publications
co-mentioning the disease and tissue (and synonyms thereof), relative to the number of pub-
lications mentioning the disease or tissue alone [1d]. We transformed the covariance into

an association score between a tissue and a disease by calculating the fraction of covariance

30Online at http://www.pnas.orqg/content/105/52/20870/suppl/DCSupplemental.
“http://www-bimas.cit.nih.gov/cards/
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Figure 3.2: Overview of the study. (a) The different analyses and how they relate to each other. (b) 59 inherited
cancers and more than 1,000 other Mendelian disorders are mapped to 1,265 causative genes and 1,524 complexes
using a combination of automated parsing of OMIM and Pubmed. Genes and complexes are stratified into three
major categories, non-cancer disease, cancer-gain of function, and cancer-loss of function. This stratification is
done by a combination of manual curation and semi-automated steps. (c) A unique set of 1,524 protein complexes
associated to disease are generated by querying the proteins of disease genes for direct interaction partners in a human
protein interaction network followed by several quality control steps. (d) Transcriptional regulation of both genes
and sets of genes that work together in cellular complexes are analyzed across tissues of the human organism. (e)
Diseases are mapped to relevant tissues using association degree of particular diseases and tissues across MEDLINE.
Steps are taken to reduce errors in word recognition and handle synonyms accurately. These steps are followed by
determination of an optimal cut-off and rigorous quality control. Hereby we produced a matrix where diseases are
mapped to tissues relevant to the pathology with a precision of more than 0.8. Cancers are mapped to tissues that
are the primary origin of tumor formation with a precision over 0.95.
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that a given tissue-disease pair constituted, of the total covariance for a given disease. Calcu-
lating an association score for the 73 tissues used in the GNF tissue atlas [T15], versus 1,054
OMIM diseases yielded a disease-tissue association matrix (Figure B.3)). By manually validating
the associations we determined a cut-off where tissues associated with the pathology of a given
disease could be determined with a precision over 80% (see SI and Figure S3), meaning that
above this threshold tissues relevant to the pathology of a given disease can be accurately iden-
tified amongst the GNF atlas tissues in more than 80% of the cases. Tissues associated with the
pathology of a given diseases are in the further text defined as disease-tissue associations scoring
above this cut-off.

Mapplng complexes to cancers

A large number of genes have been associated with cancers, due to aberrant expression or so-
matic mutations in tumors. However, few of these genes have actually been proven to play a
role in the initiation of the tumor. Hence, an automated mapping of cancer genes to com-
plexes would include many genes that are mutated in tumors, but do not cause the cancer. As
we are interested in studying the tissue distribution of disease initiating genes and complexes,
we manually created an exhaustive list of heritable cancer genes that initiate tumors through
germline mutations. These genes were mapped to OMIM diseases describing the cancers man-
ually (Table S2°). For this subset of genes, there is compelling evidence that defects are the
primary cause of the cancer. In total we extracted a subset of 51 genes in which mutations lead
to heritable cancers and mapped them to 59 cancers. Since most cancer mutations are either
loss or gain of function which could influence the mechanisms of disease progression and have
bearing on the mechanisms of tissue-specificity, we further stratified the cancer genes into loss
or gain of function as defined in Vogelstein et al. [T03]. Examples of loss of function genes are
tumor suppressor or DNA repair genes that become defective when mutated, and examples of
gain of function are kinases which become constitutively activated by mutations (Table S3).
Cancer associated complexes were identified as complexes enriched for this subset of genes. In

the further text we refer to these as cancer complexes.

Generating a disease-tissue association matrix for cancers

Cancer to tissue association mapping is not straightforward. In this study we were interested
in exclusively studying the tissues in which tumors are initiated through germline mutations
of particular genes. Since cancers generally affect many tissues through downstream effects
such as metastases, associations to non-initiating tissues had to be filtered out. Furthermore,
many cancer syndromes, arising from germline mutations in cancer genes, also include non-
malignant pathology, for which disease-tissue association had to be disregarded in this analysis.
For this reason, we manually analyzed the complete subset of tissues associated to heritable

cancer syndromes resulting in a precision approximating 100% for the cancer-tissue associations

(ST and Table S4).

5Online at http://www.pnas.ora/content/105/52/20870/suppl/DCSupplemental.
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Figure 3.3: Disease-tissue association matrix. The color range goes from light grey, which corresponds to no associ-
ation of disease and tissue, to dark blue at 12% association. The percent association is the proportion of a disease's
association to a particular tissue in the Novartis Research Foundation Gene Expression Database (GNF) atlas, out
of the cumulative association to all tissue in the atlas. (a) The first 100 diseases mapped to the 73 tissues in the GNF
atlas. (b) A subset of the disease-tissue associations.

Correlation between pathology and tissue-specific expression

First, we analyzed the expression of disease genes in the tissue with the highest disease-
association in the disease-tissue matrix (rank one). This analysis was repeated for the 2nd to
25th highest associated tissues (rank two to 25) and the average z score at each rank level was
plotted as a curve (Figure B.4a). For example myosin heavy chain 6 (MYHS6) is involved in
hypertrophic cardiomyopathy and the tissues from the GNF atlas ranked first and second in
relation to hypertrophic cardiomyopathy are heart and cardiac myocytes. We determined the
z-score of MYHG in heart (tissue rank one), the average z-score of MYHG in the two high-
est ranked tissues, heart and cardiac myocytes (tissue rank two). This procedure is repeated
for ranks three to 25. This gives a set of rank dependent z-scores for MYH6. This procedure
is repeated for every disease gene in every disease yielding rank dependent z-scores for every
gene-disease combination, which is plotted in Figure f.4a. This figure shows the clear tendency
of overexpression for disease genes in tissues with the highest rank (blue curve). The curves
for cancer genes show two different trends. While gain of function genes are overexpressed
in tissues with the highest rank (red curve), loss of function genes are underexpressed (green
curve).

To see if the observed expression trends were significant, we averaged the z scores in the tis-
sues associated with the disease and compared to their expression levels in non-affected tissues
(Figure B.4b). For non-cancer disease genes we observed a significant tendency of overexpres-
sion (p<1.0e-6), which is also the case for gain of function cancer genes (p=3.9e-2), but with
less significance. Loss of function cancer genes show the converse trend of underexpression,
(p=1.0e-2).

We carried out the same analysis for the protein complexes which showed that the expres-
sion trend observed for disease genes is conserved at the level of disease protein complexes (see
Figure .4d and .4c). These disease complexes display a significant tendency to be overex-
pressed in tissues where they are involved in pathology (p<1o0e-6, blue curve). While protein
complexes significantly enriched for gain of function cancer genes follow the tendency of over-
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expression (p= 0.44, red curve), and complexes enriched for loss of function cancer genes are
underexpressed (p=3.4e-3, green curve).

As the z scores were lower for the cancer genes and complexes compared to the more robust
values of the non-cancer disease genes and complexes, we tested if this result was influenced by
the data set and normalization method. We replicated the analysis using a different and novel
robust multi-array (RMA) based normalization scheme [117]. Expression data normalized with
this algorithm still showed a significant overexpression of disease genes and complexes, but
both the over and underexpression trends for the cancer genes and complexes decreased in
significance. To test if a few diseases or tissues were driving the observed trend, we analyzed the
expression trend broken down into single tissues (Figure S4) and by bootstrapping the dataset
both on disease and tissue level. This analysis shows that that most tissues contribute to the
observed results and they are robust to bootstrapping of the data set.

Examples of disease complexes with tissue and phenotype correlation

Examples of the correlations found between tissue expression and pathology or phenotype re-
ported are provided in Figure B.3. Also, the most significant gene ontology (GO) subcellular
and functional categories for the complex in question are indicated followed by the significance
with which the complex can be assigned to this GO category. Tissue names are as defined in the
GNP atlas. The full sets of proteins in each complex can be seen in Figure S5 (Supplementary
Material, online).

XY sex reversal can be caused by mutations in the transcription factors SRY (Sex determin-
ing Region Y) [118]. SOX 9 (the SRY sex determining region Y-box 9 gene) [119], NRsA1
(the nuclear receptor subfamily sA1), more commonly known as SF1 [120, [f21]; and NRoB1
(nuclear receptor subfamily @ﬁnore commonly known as DAX1 [r22]]. Additionally SOX
9 is associated with campomelic dysplasia a bone disorder that leads to a number of associated
skeletal and cartilaginous deformities [[123]. SF1 is needed for gonad and adrenal differenti-
ation [2d, f24] and for proper steroidogenesis as well as for Mullerian Inhibiting Substance
(MIS) ligand and MIS receptor expression [124, f25]. DAX1, which leads to XY sex rever-
sal both when overexpressed, by inhibiting SF1 [[22]], and when inactivated, as it is required
for testis differentiation by regulating expression of SOX9 [126]. While the activity of SF1,
DAXi1 and SOXg is required for testis differentiation and development, none of these genes
are essential for ovarian development [126--129]. Here we identify a transcriptional regula-
tion complex (GO:0006355: p=1.9¢-8) containing DAX1, SF1, and SOX9 all of which are
known to be associated with sex reversal (p=6.9¢e-6). Furthermore, the complex contains SOX8
that is closely related to SOX9 and implicated in regulating the expression of testis-specific
genes [£39]. While, the complex is overexpressed in testis cells, it is underexpressed in ovaries
(Figure .5 on page 49), which coincides with the known biology of the most well character-
ized of its components. Our method thus has predictive value as it can i. detect interactions
between molecules which, by themselves, are known to be important in sex differentiation and
determination by producing sex reversal, ii. validate these findings by demonstrating dimor-
phic tissue-specific expression that correlates with the pathology resulting from inactivation of
several members of the complex, and iii. reveal the importance of new interactors worthy of
further study.
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Figure 3.4: Expression levels of disease genes and complexes in pathologically associated tissues. (a) The expression
level of genes associated with diseases and cancers in the tissues most associated with the particular disease caused by
the genes. Tissues are ranked with the most associated tissue at the intersubsection with the y-axis and in declining
order from left to right. This plot shows the trend of overexpression for disease genes and gain of function cancer
genes in tissues with the highest rank. Loss of function cancer genes are generally underexpressed in the tissues
with the highest rank. (b) The average discase gene expression in associated tissues is shown. Disease genes are
overexpressed with an average z-score of 0.28 (p<10e-6). The cancer associated genes show two different trends;
gain of function follow the trend of all disease genes, with an average z-score of 0.30 (p=3.9¢-2), but loss of function
genes have a tendency to be underexpressed in the tissues associated with tumor formation, with an average z-score
of -0.21 (p=1.0e-2). (c,d) The same analysis is shown at the level of protein complexes, where the trend is conserved.
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Four other complexes, where tissue-specific overexpression correlates with pathological man-
ifestations, are depicted in Figure B3], (see SI and Figure S5 for more details on these four com-
plexes and for examples of cancer related complexes). These include i. a complex involved in
Charcot-Marie-Tooth disease type 4F and overexpressed in spinal cord, dorsal root ganglion,
and skeletal muscles; ii. a sarcoglycan complex involved in Limb-Girdle muscular dystropy
overexpressed in skeletal muscle, cardiac myocytes and heart; iii. a myofibril complex involved
in familial cardiomyopathy overexpressed in several tissues associated with the disease such as
heart and cardicac myocytes; iv. and a complex involved in catechol metabolism and Parkin-
son disease, overexpressed in a number of relevant brain tissues including the caudate nucleus,
subthalamic nucleus, and globus pallidus. While the overexpression of the sarcoglycan and
myofibril complex in skeletal tissues is well known, the ovarian-testes dimporhic expression
pattern of the sex-reversal complex, and the overexpression of a Parkinson complex in several
relevant brain tissues of the basal ganglia are suggestive of the underlying tissue-specific biology
of these disorders. Across all examples the tissue-specific expression patterns correlate with the

pathological changes observed when one or several members of the complex are defective.
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Figure 3.5: Representative examples of disease complexes are displayed. Diseases are associated with tissues using
our disease-tissue matrix, and expression data are from the GNF data set. The expression levels of complexes are
shown as z-scores. If a disease is associated with more than three tissues, only the three most associated tissues are
shown for clarity. In a given complex, proteins relevant to the disease in question are yellow. The figure shows the
general tendency of overexpression of the complexes in the tissues in which they are involved in pathology compared
to their expression level in other tissues.
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Discussion

The complex data set reported here is more than three times larger than our reported set of
complexes [l47]] and contains approximately seven times more interactions compared to the only
previously reported experimental screen for human complexes [131]. To our knowledge, this
data set comprises the first set of systematically generated complexes with tissue, phenotype, and
sub-cellular resolution in any mammalian organism. The entire atlas is made available online
at http://www.cbs.dtu.dk/suppl/dgf/.

A theoretical limitation of our approach is that we use gene expression data to map com-
plexes to tissues due to the lack of good coverage of quantitative proteomics expression data.
Early studies of the relationships between mRNA expression and protein abundance levels
have consistently reported modest correlations [[132--134]. However, recent work, which uses
a probabilistic framework to model the relationship between the experimentally recorded pro-
tein and mRNA patterns, has confirmed that in 75% of all genes tissue mRNA expression
patterns linearly correlate with protein abundance, and this overall good correlation is shown
for the dataset we use in this work [[135]]. However, to test how a lack of correlation for 25% of
the genes affects our results, we randomized 25% of the data points and found that the results
achieved for disease genes and complexes, and for loss of function cancer genes and complexes
were robust (p<1.0e-3, see SI). Furthermore, the tissue resolution of our complexes is sup-
ported by the observation that they are significantly enriched in proteins co-occuring in tissue
samples that are analyzed using manually curated immunohistochemistry data (SI and Figure
S2).

Our results support the notion that known disease genes generally are tissue specific [46,
104, by being selectively overexpressed in the tissues in which specific gene defects cause
pathology. Alternatively high levels of gene expression may be needed for the functional ac-
tivity of the tissue. Moreover, we show that this trend is conserved also at the level of the
protein complexes in which the disease genes carry out their biological function.

Most known genes which initiate cancer are involved in ubiquitous processes such as DNA
repair, cell cycle regulation and apoptosis [103, £36--138] and Table S3. And it remains a
key puzzle in oncology to determine how germline mutations in general genes initiate tissue-
specific tumors [[137]. To investigate this contradiction, we also analyzed the expression patterns
of cancer genes and complexes involved in heritable cancer syndromes. The gain of function
cancer genes and complexes follow the trend of non cancer disease genes and are generally
overexpressed in tissues where they initiate tumors, conversely complexes enriched for loss of
function genes are underexpressed in the tissues where mutations cause neoplastic transforma-
tion. Our results for cancer genes and complexes were not robust when different algorithms
were used to normalize the expression data. There could be a number of reasons for the lack of
a tissue-specificity signal for the analyzed cancer genes and complexes. The current concepts of
cancer indicate that some tumors are initiated by a small subset of stem cells [[£39] whose spe-
cific expression levels would be impossible to detect in tissue samples with the resolution used
here. Another hypothesis is that tcumor initiation is caused by a combination of mutations in a
key gene, exposure to mutagenic substances or ionizing radiation, and high proliferation rates
of specific cell populations in a tissue [137], a combination we do not analyze here. However,
our results highlight the fundamental difference between the tissue specificity of cancers and
other diseases, and shows that this difference is consistent on both gene and complex level.
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Functional genomics and sequencing have been extremely useful tools for identifying the
complete sets of genes in humans and model organisms, and deducing how disruption of dif-
ferent genes in a common molecular pathway can lead to similar phenotypic pathologies. These
results indicate how the function of genes is organized in space and time. The next step is to
model entire systems using data integration and systems biology. This has proven difficult in
humans due to experimental limitations and ethical issues, suggesting that other strategies must
be considered. We take a step towards this goal by creating a number of new data sets, in part
by refining, re-analyzing, and integrating existing data to identify a comprehensive list of func-
tional modules that are associated with pathological processes in humans. We analyze their
spatial tissue-specific and sub-cellular patterns and correlate this information with the diseases
that are the result of defects in the modules. As such, our data set and the scaffold of the analysis
presented could be useful in disease systems biology of humans, and provides draft mechanistic
pathways that can serve as potential molecular drug targets.

Materials and Methods
Mapping genes and complexes to tissues

We used the GNF tissue atlas [[r15]] that includes reproduced RNA expression experiments
from 79 human tissues. Six tissues were removed as they were derived from cancer tissues. We
chose the GNF data set as it displays high reproducibility [14d], and the transcript levels show
generally a linear relationship with protein abundance [13]. We log-transformed hybridization
levels and normalized within each tissue (to ensure equal weight), followed by a normalization
across all tissues, thereby ensuring that expression levels represented the relative presence of a
transcript in one tissue compared to the other 72 healthy tissues in the data set. For complexes,
the normalized expression levels of all genes in a complex were averaged for each tissue. To test
the effect of different normalization methods on our results, we prepared the same data set with
Eklund and Szallasi's novel normalization method [117] and compared the results.

A curated set of genes in which mutations lead to tumor formation

We curated a set of genes in which mutations had been shown to lead to heritable tumor
formation and mapped them to OMIM diseases (see Table S3). By following the definitions
introduced by Vogelstein et al. [[L03]] we also noted whether the genes were oncogenes or non-
oncogenes (such as tumor suppressors or DNA repair proteins) (see Table S4).

Mapping of complexes to OMIM diseases

We calculated the enrichment of proteins involved in the same OMIM disease using the an-
notations in GeneCards, which has previously been shown to be an accurate way of mapping
genes to diseases [l47]. We calculated the significance of an enrichment using a hyper-geometric
test.

SI
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Under- and overexpression significance

We averaged the expression z score over all disease genes in the most disease-associated tissue as
determined from the disease-tissue matrix. For each rank from 1 through 25, we calculated the
average z score yielding a curve. In Figure .4 on page 48, this curve is plotted as the average
z scores of all gene-disease pairs in tissues with a particular rank. This procedure was repeated
for gain of function and loss of function cancer genes. Again this approach was repeated on a
protein complex level. All reported significances are two-tailed using the Students t-test.

Disease-tissue association matrix.

To identify the tissues most affected by diseases described in the OMIM database [63], we used
co-mentioning of a given disease with a given tissue across MEDLINE [r16]. The tissue names
from the Novartis Research Foundation Gene Expression Database (GNF) [[L1§]] were manually
curated and translated to corresponding medical subject heading (MeSH) terms (to reduce
errors in word recognition and handle synonyms properly). Similarly, the disease names were
determined using disease titles provided in OMIM. Also, these titles were manually curated
and translated to the relevant MeSH terms. We used Ochiai's coefficient (OC) as a measure of
similarity derived from the co-occurrences [[141--143], and calculated an association score (see
below), as the percentage of the total normalized co-occurrence of a given disease that could be
attributed to a given tissue. Validation was carried out as described in the SI.
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Abstract

Aberrant organ development is associated with a wide spectrum of disorders, from
schizophrenia to congenital heart disease, but systems-level insight into the underlying
processes is very limited. Using heart morphogenesis as general model for dissecting the
functional architecture of organ development, we combined detailed phenotype infor-
mation from deleterious mutations in 255 genes with high-confidence experimental in-
teractome data, and coupled the results to thorough experimental validation. Hereby,
we made the first systematic analysis of spatio-temporal protein networks driving many
stages of a developing organ identifying several novel signalling modules. Our results
show that organ development relies on surprisingly few, extensively re-cycled, protein
modules that integrate into complex higher-order networks. This design allows the for-
mation of a complicated organ using simple building blocks, and suggests how muta-
tions in the same genes can lead to diverse phenotypes. We observe a striking temporal
correlation between organ complexity and the number of discrete functional modules co-
ordinating morphogenesis. Our analysis elucidates the organization and composition of
spatio-temporal protein networks that drive the formation of organs, which in the future
may lay the foundation of novel approaches in treatments, diagnostics and regenerative
medicine.

Introduction

Insight into the biology of molecular networks driving organ development is an important and
emerging fleld since aberrations in these systems underlie a wide spectrum of highly polygenic
human disorders, ranging from schizophrenia [144], to congenital heart disease (CHD) [45]].
Understanding the functional architecture of networks that orchestrate the development of
organs may also lay the foundation of novel approaches in regenerative medicine, because ma-
nipulation of these systems will be necessary for the success of tissue-engineering technologies
and stem cell therapy [46].

We used heart development and CHD as a general model for dissecting the functional pro-
tein networks underlying a developing organ and its related, genetically complex, human disor-
der. The heart is particularly suitable for such an analysis, because it is among the most studied
of all organs, it is the organ most susceptible to disease and its developmental processes and
genes are extraordinarily conserved enabling straight forward integration of data between hu-
mans and model organisms [[147, [48]. Genetic studies in humans and model organisms have
identified hundreds of genes involved in heart development. In mice, phenotypes caused by
targeted mutations can be organized into hierarchical morphological subgroups, which point
at the spatio-temporal role of the disrupted genes. These results have led to a hypothesis suggest-
ing that during organ development autonomous anatomical sub-structures are coordinated by
discrete protein complexes or pathways (i.e., functional modules) integrating into higher-order
functional networks, and that evolutionary newer anatomical structures might re-cycle parts of
the networks used in more ancient structures [[149]. Although transcription factors have been
identified as central players in these processes [[[48--158], we currently lack overviews of how
most genes integrate into functional modules and networks during the different developmental
stages. Our lack of understanding of this biological architecture is exemplified by the knowledge
that genetic factors contribute significantly to CHD [45]], but less than 5% of CHD patients
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have mutations within the few identified causal human genes, suggesting that many genetic
principles of the molecular networks driving heart development remain to be understood.

Results and Discussion

First, we manually curated a set of 255 cardiac developmental genes, in which targeted mu-
tation leads to heart phenotypes in mouse models, from the Mouse Genome Database ver.
3.44 [L59]. We used the Inparanoid orthology database [160] to find the orthologous 255 hu-
man genes, and then identified their corresponding human proteins. We used InParanoid since
this method several times has been shown to be superior to other methods for mapping func-
tional orthologs [[£61, £62]]. We refer to this set of human proteins as cardiac developmental
(CD) proteins. The 255 proteins are stratified into a total of 19 morphological subgroups re-
flecting the specific phenotype associated with their mutation (Table S1°), which can be used
as an indicator for the spatio-temporal role of the individual genes. For each of the 19 sets of
proteins we constructed functional networks (Figures S1-S4) using their interaction patterns in
refined experimental proteomics data (Materials and Methods), and indeed several novel mod-
ules not previously associated with heart development emerged from our analysis (see below).
Randomization tests of the resulting networks show that 18 of the 19 gene sets significantly
interact at the protein level after adjustment for multiple testing using a Bonferroni correction
(Materials and Methods and Figures S1-S4), indicating that the genes involved in each devel-
opmental stage have a strong tendency to directly interact at the protein level, or are part of
connected pathways. In total the resulting interaction networks consists of 629 unique proteins,
have both time and tissue resolution, and describe a wide variety of developmental stages and
anatomical structures in the developing heart. These data represent a new framework for the
study of organ development at the systems level, and they extend considerably our understand-
ing of the highly polygenic nature of organ developmental processes, which has been shown
previously at the level of gene expression [L63]].

We manually annotated the functional clusters in the networks by literature curation. We
chose manual literature curation over automated gene ontology analyses, to exploit the consid-
erable experience and expertise in our group on developmental programs. This analysis revealed
several functional modules which are novel in relation to heart development, including focal
adhesion signaling modules and a module of unknown function which include Sorting nexin
9 (SNX9, Supplementary Information, Figure S2C and S3A). The quality of the data was con-
firmed by the existence of many known functional modules in the networks (e.g. NOTCH
signaling in development of the ventricular trabeculae [164]). Examples of four networks are

shown in Figure .6 on the Tollowing pagd; the proteins involved in four phenotypes and their

interaction partners fall into distinct modules, represented as highly interconnected subclusters
in the networks. E.g., the data show that WNT, semaphorin, FGF/PDGFR, BMP/TGFbeta,
and retinoic acid signaling are involved in development of the outflow tract and suggest that
extensive communication takes place within and between modules.

To get insight into how the modularity of heart development is organized across spatio-
temporal morphological stages, we created module maps of the different networks and grouped

them according to temporal development (i.c., carly, intermediate and late developmental

SAvailable online on http://www.nature.com/msb/journal/v6/n1/suppinfo/msb201036_S1.html

55


http://www.nature.com/msb/journal/v6/n1/suppinfo/msb201036_S1.html

3. DISEASE GENE FINDING

56

Atrial septal defect

Abnormal atrioventricular valve morphology

Transcription
MOTCH signasig reguinton

Abnormal outflow tract development

Figure 3.6: Examples of four functional networks driving the development of different anatomical structures in
the human heart. These four networks constructed by analyzing the interaction patterns of four different sets of
cardiac development (CD) proteins corresponding to the morphological groups “atrial septal defects', “abnormal
atrioventricular valve morphology’, “abnormal myocardial trabeculae morphology', and *abnormal outflow tract
development'(Table St online). CD Proteins from the relevant groups are shown in orange and their interaction
partners are grey. Functional modules annotated by literature curation are indicated with a coloured background.
High-resolution figures (including protein names) can be seen in Figure S2A, S2C, S2D and S3B, respectively.
Centrally in the figure is a haematoxylin-eosin stained frontal section of the heart from a 37 days human embryo,
where tissues affected by the four networks are marked; AS (developing atrial septum), EC (endocardial cushions,
which are anatomical precursors to the atrioventricular valves), VT (developing ventricular trabeculae) and OFT
(developing outflow tract). The entire set of 19 networks is shown in detail in Figure S1-S4, and can be downloaded
from http://www.cbs.dtu.dk/suppl/daf/.
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stages of organogenesis, Figure 3.7 on the next pagd). Here, the modular design of the functional

networks becomes clear across developmental stages and anatomical structures. Surprisingly, al-
though the networks in some instances contain hundreds of proteins, they consist of relatively
few protein modules that are extensively recycled across developmental stages (Figure 2 p.7 A
and B). Moreover, each network consists of a combinatorial unique module pattern. Although
modularity is known to be a core feature of the organization of organisms [165], to our knowl-
edge, this concept has not been shown at the level of protein networks in organ development
before. This organizational concept allows for the formation of a very complex organ using rel-
atively simple building blocks and suggests how mutations in the same genes and modules can
lead to very diverse phenotypes. For example, NOTCH signalling modules are present in the
networks representing atrial septal defects (ASD, Figure S2A) and double outlet right ventricle
(DORY, Figure S3C) in line with the observation that mutations in NOTCH1 may lead to
atrial septal defects in one individual, and double outlet right ventricle in another [164].

Development of the human heart starts approximately two weeks after fertilization with
the formation of the cardiac crescent and the subsequent formation and looping of the prim-
itive heart tube. At this stage the heart is an anatomically simple structure associated with the
“early phenotype' networks in Figure f.7. Looping is followed by extensive tissue remodelling
which includes septation of the atrium and ventricles, and development of trabeculae within
the ventricles. Defects at this stage results in ‘intermediate phenotypes'. The last stages of heart
development include construction of the heart valves and separation of the outflow tract, as
determined by ‘late phenotypes'. Throughout this transformation the organ, along with the
embryo, becomes an anatomically much more elaborate structure [148], which remarkably is
mirrored in the complexity of the functional networks we have identified as drivers of these
processes.

We have quantified network complexity based on i) the number of distinct functional mod-
ules present in each network, and ii) the total amount of proteins in each network. The amount
of modules in networks associated with *early phenotypes' is on average 2.5 which increases to
an average of 5.8 for “late phenotypes' (Figure B.7C, Spearman p = 0.76, p = 0.010). A similar
observation can be made for the total amount of proteins in each network that increases from
an average of 42 to 119 (Figure B.7D, Spearman p = 0.72, p = 0.016). Although the stages
of heart development are broadly defined, there is a clear trend across all networks for later
phenotypes to be associated with more complex and functionally diverse networks .

Thus, our analysis of the networks strongly suggest that increased morphological complex-
ity of the heart is correlated with increased signalling complexity at the molecular level, which
support a model predicting that the four chambered heart has evolved by addition of new au-
tonomous anatomical structures [[167, L68]. Analysis of functional data at the systems level sug-
gests that this evolution in part relies on recycling and shuffling of existing functional modules,
to create combinatorial unique functional networks that drive the formation of new anatom-
ical structures. Furthermore, our results mirror the findings of evolution modelling and al-
gorithms, which show that modularity in networks can spontaneously arise under changing
environments [169, 17d], a principle which allows for rapid organism adaptation to new de-
mands [169]. Importantly, we couple these findings to the anatomical development of organs
and together these studies give insight into the forces that advance structural simplicity in bi-
ological networks underlying organ development.

57



3. DISEASE GENE FINDING

58

A Early phenotypes
E1. Abnormal heart E2. Abnormal looping E3. Abnormal E4. Abnormal atrio- Function of clusters
tube morphology morphogenesis sinus venosus ventricular canal

morphology

s o» e *

Intermediate phenotypes

Late phenotypes

Other function

No. of proteins in clusters

10 20 30 40 50
—— Direct interaction

------ Indirect interaction

0 [ :
E1 E2 E3 E4 " 12 13 14 L1 L2 L3 L4
v} Anatomical D Anatomical E Modular
Vs vs protein tent vs transcripti
B4 200 60 4
7 ® 180 ° L4
160 § 501
= 6 [ ] L] M ‘g’
40 4
£ 54 . 'E 120 '—é
E 4 4 ] S 100 o 304
2 £ =
2 34 ° 2 0 £ 204
2 £ ® 8
24 £
40 £ 10
14 L] 20 =
T T T ] [} T T T [1] T d
Early Inter- Late Early Inter- Late [ ] 8
mediate mediate
Anatomical complexity Anatomical complexity Amount of modules

Figure 3.7: (A). An overview of the modular organization of heart development. Protein interaction networks are
plotted at the resolution of functional modules. Each module is colour coded according to functional assignment
as determined by literature curation. The amount of proteins in each module is proportional to the area of its
corresponding node. Edges indicate direct (lines) or indirect (dotted lines) interactions between proteins from the
relevant modules. (B) Recycling of functional modules during heart development. The bars represent functional
modules and recycling is indicated by arrows. The bars follow the colour code of (A) and the height of the bars rep-
resent the number of proteins in each module, as shown on the Y-axis (left). (C-E) Correlations between anatomical,
modular and transcriptional complexity in organ developmental networks. We plotted network complexity along
an axis of increasing anatomical complexity as defined by the early, late and intermediate phenotypes (C and D),
and observe a significant correlation. Also, modular and transcriptional complexity correlate significantly during
the traversing of organ developmental programs and stages (E). In a given network, module content is the amount
of modules, protein content the amount of proteins, and transcriptional content the amount of proteins directly
involved in transcriptional activation.
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Formation of organs depends on highly conserved sets of transcription factors [171] of which
spatio-temporal regulation is critical to achieve correct patterning [[r 5d]. During development,
series of transcription factors function hierarchically to regulate specific developmental pro-
grams [163), 172, 73]]. These observations raise the question of how transcriptional programs
are linked to the timing of developmental processes and the relationship between the transcrip-
tional programs, cellular networks, diseases, and the developing organ.

GATA4, NKX2-5, and TBXs are known to be involved in many stages of heart development
and defects in these genes have been established as the cause of familial CHD [x5d, 52, [57].
As expected, we observe these transcription factors participating in most of the networks and
across almost all stages of heart development, stressing their importance (Figure S1-S4). In
addition to GATA4, NKX2-5, and TBX5, the networks also contain a large amount of other
proteins directly involved in transcriptional control either as transcription factors, or by partic-

ipating in transcription initiation complexes and networks (Figure p.7 on the facing pagd and

Figures S1-S4).

Two transcriptional concepts have been observed in organ development. Some regulators are
only active for a brief period of time and usually produce a uniform response in the expressing
cells [E5, £63), 73]]. Other regulators such as GATA4, NKXz-5, and TBXs are continuously
expressed, but activate different sets of genes at different developmental stages, suggesting they
are parts of more heterogeneous and complex transcriptional programs [[53, £54, 158, f74].
The latter type of regulators exert their specific function by exploiting promoter affinity gra-
dients, and by through complicated patterns of promoter elements that scaffold sets of tran-
scriptional proteins [[I53), [54]. Our data show that GATA4, NKX2-5, and TBXs participate in
most of the transcriptional modules throughout heart development as expected (Figure S1-S4),
but interestingly, the modules vary widely in complexity and in the specific composition of the
participating proteins. Thus, on the level of transcriptional protein networks, we observe com-
binatorial regulation, which provides the organism with a high degree of flexibility for GATAy,
NKX2-5, and TBXs, and enables them to play a broad role during heart development. This
is consistent with the remarkable variability of phenotypic outcome that can be the result of
mutations in each of these genes.

Interestingly, the amounct of transcriptional proteins in the networks increases from an aver-
age of 11 in the networks associated with “early phenotypes', to 32 in the networks associated
with ‘late phenotypes'. Moreover, there is a significant correlation between the amount of mod-
ules in each network and the amount of proteins directly involved in transcriptional control in
the same networks (Figure B.7E, Spearman p = 0.69, p = 0.035). Thus, our results show a direct
relationship between anatomical, modular and transcriptional complexity during the traversing
of organ developmental programs and support the concept of combinatorial regulation at the
protein level.

To experimentally test the biological accuracy of the module maps, we systematically iden-
tified 49 novel heart developmental proteins from the modules (Table Sz, Table S3). These
candidates were interacting significantly with the CD set, but were not in the literature associ-
ated with heart developmental processes (the procedure for scoring and identifying the final 49
candidates is described in detail in Supplementary Information and Figures Ss). Twelve of these
candidates were selected for immunohistochemistry (IH) analyses to test if they were expressed
at the time and place determined by the functional networks in which they participate and the
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specific morphological groups associated with those networks (the procedure and criteria for
choosing the tested proteins is described in detail in Supplementary Information and Figures
Ss, and S6). Immunohistochemical analyses were systematically performed on a total of 382
tissue sections from 19 developing human hearts in a blinded fashion, and a semi-quantitative
measure for the expression level of each protein was determined in at least six anatomical struc-
tures or tissues, and across six developmental time points (Table S4 and Figures S7-S13).

For all twelve proteins we see strong evidence of heart developmental function (Table
S4). Importantly, eleven of the proteins (SNXg, DLL1 (DELTA), NOTCH3, JAG2, PTGS2
(COX-2), CAV3, SRC, MAPK3 (ERK1), MAPKS (JNK1), BMX and PTK2B), and are specif-
ically expressed in the anatomical structures associated with the morphological grouping of the
functional network in which they participate (Table S5 and S7-S13).

As a standardized estimate of the network-based prediction signal, we calculated the preci-
sion of our predictions as the true functional predictions amongst all functional predictions
(or the amount of true positives amongst all positives). Using a conservative estimate of a true
functional prediction, the precision is 0.72 (Supplementary Information and Table S5), mean-
ing that the morphological groups associated networks in which a candidate emerges, correlate
with the candidates being specifically, and highly, expressed in relevant tissues at relevant time
points in 72% of the cases. For example, SNX9, which is not associated with heart development
in the literature, emerges in several networks associated with valve development (Figure S2C
and S3A). We confirmed this role of SNX9 by observing that it is highly expressed specifically
in the cell populations driving the development of the endocardial cushions (EC), which are

anatomical precursors of the heart valves, and aortic valves (AV, Figure .8 on the next pagd
A-C). Analogously, DLL1 and PTGS2 are predicted to be involved in the development of the
atrial septum (Figure S2A), and cardiac myocardium (Figure S4A-E), respectively. These pre-

dictions are confirmed by their specific expression patterns in the relevant structures of the
developing heart at the correct developmental time points (Figure f.§D-F). For enlargements
of IH pictures, many more details, examples of antibody specificity, and a more thorough dis-
cussion of the functional roles of these candidates see Supplemental Information and Figure
S7-S14.

To further validate the network data we carried out expression profiling of the larger set of 49
candidates across different developmental stages using quantitative real-time RT-PCR on RNA
extracted from 14 embryonic human hearts (Figure 3.§G-L). The candidates were significantly
differentially expressed during heart development, compared to a set of controls (Figure B-8G,
Mann-Whitney (Wilcoxon) W test, p<0.006, Table S6), and significantly higher expressed
in heart tissues than random controls (p=0.016, Figure S15 and Supplementary Information).
To investigate this trend in more detail, we analyzed the relative expression levels of a subset
of the candidates in 12 additional hearts at 12 different time points between 40 and 67 days
post fertilization (Table S7). This analysis showed that half of the candidates were significantly
differentially expressed across these twelve time points further supporting their role in human
heart development (Figure B-§H-L and Table S7). Together with the IH results, these data
strongly establish the biological signal in our network data, and the high accuracy of the module
maps.
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Figure 3.8: Examples of functional validations of candidates emerging from the networks. (A-F) The functional validations rely
on a total of 382 tissue sections of which only a very small subset (six of 382 or less than 2%) are shown in this figure. (A) SNXg is
located in clusters of unknown function involved in development of the cardiac valves (Figure S2C and S3A), which correlates with
its specific expression in endothelial cells of the endocardial cushions (EC, precursors of heart valves) in a nine week old human
heart. Note that strong expression of SNXg is confined to the endothelial cells lining the developing portion of the EC (section
below (A)). (B) Toluidine blue staining of hyaluronic acid, a marker for epithelial-mesenchymal transformation in the endocardial
cushions correlates with the expression pattern of SNX9, hereby confirming its expression specifically in the developing parts of
the EC. (C) SNX9 expression in endothelial cells of the developing aortic valves (AV) in a nine week old human heart. Strong
expression is shown in endothelial cells lining the valves and in cells within the valves. (D) DLL1 expression in the leading edge of
septum primum (SP) in a six week old human heart. DLL1 is located in a NOTCH signaling cluster involved in development af
the atrial septum (Figure S2A). Note the stronger expression in the migrating and developing part of the SP (arrows) compared to
endothelial cells lining the inner surface of the atrial wall (asterix). (E,F) Expression in cardiomyocytes of the ventricle and atrium
of PTGS2 in an 18 week old human heart. PTGS2 is located in several clusters involved in myocardial growth and organanisation
(Figure S4A-E). Note the stronger expression of PTGS2 in the atrium (At) compared to the ventricle (Vt). (G-L) Validating a larger
set of 49 candidates by real-time quantitative RI-PCR. (G) The gene expression level of the candidate genes and 29 control genes
were measured in two hearts collected from embryos at ages 46 days and 67 days, respectively. Controls were genes corresponding
to randomly chosen proteins that did not significantly interact with the 255 CD proteins, but were represented in our interaction
data set. The data distribution is displayed by a box-and-whisker plot. A single outlier data point in the control group is shown
with an asterix. (H) Heatmap showing the relative level of gene expression of 18 representative candidates (level at day 40 = 1).
The gene expression level of each of the 18 candidate genes was analyzed in hearts collected from 12 human embryos or fetuses
of the indicated stages of development (between day 40---68 post fertilization). The data was sorted in four groups according
to expression pattern of the genes using hierarchical clustering. Statistical significant correlation between expression value and
days post fertilization is marked by an asterisk (I-L) Representative plots of gene expression within the four groups. A trend line
representing the average value of the data in four groups of three data points is shown as a smoothed line. Expression levels were
measured by QPCR and the data was normalized using the average value of six housckeeping genes (GAPDH, COX4A, B2M,
ATP6A, HPRT, RPL13).
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Conclusion

We present a framework for gaining new insights into the systems biology of the protein net-
works driving organ development and related polygenic human disease phenotypes, exempli-
fied here with heart development and CHD. Our analysis is the first example of large-scale
integration of phenotypic data from targeted mice mutants with high-confidence experimen-
tal proteomics data and represents the most comprehensive characterization and analysis of the
functional protein networks underlying the development of an organ system to date. A strength
of our approach is that it immediately puts new candidates in the functional context of other,
more well-characterized, network components.

We have shown that analysis of organ development at the systems level can be used to dis-
cover new developmental modules, gain insight into the evolution of organs, and understand
the biology of highly polygenic disorders associated with aberrant organ development. A weak-
ness of the method is the lack of cellular resolution of the networks due to use of macroscopic
phenotypes as the starting point of the analysis. However, the morphological subgroups associ-
ated with the networks, and the IH data (which has the resolution of individual cells), strongly
suggests in which cell populations the individual networks are active. The networks generated
here can be used as a community resource for addressing major questions in developmental
and cardiac biology, and we have made a database of the relevant network data available at
http://www.cbs.dtu.dk/suppl/dgf/.

In principle, the framework can be applied to any organ, to widen our understanding of
the functional architecture of protein networks that drive the formation of organs. Addition-
ally, they can facilitate the evolution of novel approaches in regenerative medicine, because a
thorough characterization and understanding of the genes, proteins, pathways and concepts
underlying organ developmental programs will be necessary for the successful manipulation of
these systems in tissue-engineering technologies and stem cell therapy. Finally, the networks
can be used as a functional scaffold for understanding combinatorial effects of gene-gene and
gene-environment interactions in complex heart phenotypes.

Materials and Methods
Generating a functional network

A network is generated by determining the first and second order interactions of CD proteins
associated with a given morphological subgroup in a human protein interaction network con-
sisting of refined experimental proteomics data. This network is described in high detail in (Lage
etal, 2008; Lage et al, 2007)[l47, 6], and online http://www.cbs.dtu.dk/suppl/dgf/. The
full network (InWeb 29) can be downloaded from http://www.cbs.dtu.dk/suppl/dgf/.
Interactions of the CD proteins are integrated into a network by always including direct in-
teractions between CD proteins, and only including indirect interactions mediated through
proteins with Q percent of its interactions to the CD set. Various thresholds for Q are iter-
atively tested and value of Q for the final network is chosen based on which value gives the
optimal network significance, this procedure is described in detail in [175, £78]. The method
for determining network significances can be seen below. Detailed views of the networks can
be seen in Figures S1-S4.
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Determining network significances

The significance of each of the generated 19 networks was determined by randomization testing
as described in detail previously [[75], 17d]. Specifically, for an input set of N input proteins
yielding an interaction network (connected component) with G input proteins and T total
proteins a network score (NSinput) was determined. This network score is the fraction of input
proteins of all proteins in the network (G/T). We then determined the significance of the
network score by empirically estimating the probability of observing a similar or better network
score in networks generated by using 10,000 random input sets of size Ninput. The random
gene sets were chosen so the degree distribution of proteins in the random sets approximate
the input set. As each query generates a varying number of networks (connected components)
the probability estimates can be calculated from the total amount of networks produced by all
10,000 randomizations that have a network score > NSinput. For this reason network pvalues
can be lower than the amount of random queries. All network p values can be seen in Figures
S1-S4 below the title of the network. To rule out the chance of functional bias in the CD set,

we analyzed the set for bias as discussed in Supplementary Information.

Identifying candidates for IH and expression analyses

A set of raw candidates were determined by querying all proteins in our interaction network
for the amount of interactions to the CD set and determining the hypergeometric probability
of this interaction profile. Out of all proteins in the proteome, forty nine novel candidates had
a significant interaction profile to the CD proteins after adjustment for multiple testing (de-
scribed in detail in Supplementary Information and Figure S5). We then used the functional
networks assigned to each morphological subgroup to determine the most likely developmental
function of the candidates. This was done by identifying the specific sub-networks to which
the interactions of the candidates were most significant (as described in Supplementary In-
formation and Figure S6). 12 of the 49 candidates were chosen for IH analysis based on the
overlap between morphological subgroups and the developmental stages present in our panel
of embryonic hearts available for validation experiments.

Human embryonic and fetal heart tissues

Human embryonic tissues were collected from legal abortions, according to the Helsinki Dec-
laration II, and their use was approved by the local science ethics committee. Embryonic or
fetal age was based on measurement of crown-rump length (CRL). Immidiately after dissec-
tion the samples were snap frozen in liquid nitrogen or treated with RNA later according to
manufacturer's instructions (Ambion, Austin, TX). Samples for immunohistochemistry were
dissected into appropriate tissue blocks and fixed for 12-24 hours at 4°C in either 10% neutral
buffered formalin, 4% Formol-Calcium, Lillie's or Bouin's fixatives. The specimens were dehy-
drated with graded alcohols, cleared in xylene and paraffin embedded. Serial sections, 3-5 (m

thick, were cut in transverse, sagittal or horizontal planes and placed on silanized slides.
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Immunohistochemical analysis

Sections were deparaffinized and rehydrated in xylene followed by a series of graded alcohols
according to established procedures. The sections were treated with a fresh 0. 5% solution of hy-
drogen peroxide in methanol for 15 minutes to quench endogenous peroxidase and then rinsed
in TRIS buffered saline (TBS, smM Tris-HCl, 146 mM NaCl, pH 7.6). Non-specific binding
was inhibited by incubation for 30 minutes with blocking buffer (ChemMate antibody diluent
S2022, DakoCytomation, Glostrup, Denmark) at room temperature. The sections were then
incubated overnight at 4°C with the primary antibody in blocking buffer (ChemMate antibody
diluent S2022, DakoCytomation). The sections were washed with TBS and then incubated for
30 minutes with a peroxidase-labelled secondary antibody. The sections were washed with TBS,
followed by incubation for 10 min with 3,3'-diamino-benzidine chromogen solution. Positive
staining was recognized as a brown color. The sections were dehydrated in graded alcohols
followed by xylene and cover-slipped with DPX mounting media. Non-immune rabbit IgG1
(X0936) was used as negative control. Specificity of the antibodies were determined by their
ability to stain specific cell populations in the tissue sections (examples are shown in figure
S7-S12).

The following primary antibodies were used: anti-PTGS2 (35-8200, Invitrogen), anti-
MAPKS (SC-6254, Santa Cruz Biotechnology, Santa Cruz, CA), anti-CAV3 (610421, BD
transduction laboratories, Franklin Lakes, NJ), anti-MAPK3 (SC-7383, Santa Cruz Biotech-
nology), anti-SRC (AT-7016, MBL international, Woborn, MA), anti-JAG2 (SC-8157, Santa
Cruz Biotechnology), anti-DLL1 (SC-9102, Santa Cruz Biotechnology), anti-NOTCH3 (SC-
7474, Santa Cruz Biotechnology), anti-NOTCH4 (SC-5594, Santa Cruz Biotechnology),
anti-BMX (ab73887, Abcam, Cambridge, UK), anti-PTK2B (ab78119, Abcam), anti-BMP4
(ab31165, Abcam ), Anti-EGFR (#2232, Cell Signaling Technology, Boston, MA).

Real-time quantitative RT-PCR

We chose quantitative real-time quantitative RT-PCR (QPCR) for this analysis because it is
considered to be the most accurate and sensitive method for detecting RNA differences also
at very small amounts [[177]. Total RNA was isolated from tissues using TRIzol Reagent (In-
vitrogen, Taastrup, Denmark) and cDNA synthesized with SuperScript IT (RNase H-) reverse
transcriptase (Invitrogen) according to manufacturer's instructions. QPCR analysis was carried
out on a ABI 7500 Fast real-time PCR system using a LightCycler FastStart DNA MasterPLUS
SYBR Greenl kit (Roche, Hvidovre, Denmark). Primer sequences used for QPCR analysis
are available on request. To exclude that polymorphic gene expression between the individ-
ual developing hearts could account for the observed differential expression trends reported by
QPCR, we also used Polony Multiplex Analysis of Gene Expression (PMAGE) [178] to mea-
sure the expression of the 49 candidates in right ventricular outflow tract (RVOT) from TOF
patients at the time of primary surgical repair and left ventricle (LV) collected from patients
with either heart failure or diabetic cardiomyopathy. The expression levels of the candidates
were compared to the expression levels of a different set of 49 randomly chosen controls after
normalizing both gene sets against gene expression in glioblastoma tissue. Here, the heart de-
velopmental candidates were significantly higher expressed in heart tissue than the controls (p
= 0.016) (see Supplemental Information and Figure S13).
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Chapter

From chemicals to disease

1SEASE development is not only attributable to gene polymorphism or heritable defects.

In many instances, the actions of genes are known to be modified by environmental

conditions, and human disease propensity is shaped by interactions between each individual's

genes and the environment [[179] (Figure [.1)). Environmental agents have been shown to influ-

ence chronic disease susceptibility, combined with an array of factors, such as genetic fit, age,

and other predisposition conditions [18d]. True understanding about diseases cannot come

through, unless both the genetic and environmental contributions to its triggers are discov-

ered.
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Figure 4.1: Summary of gene regulatory mechanisms affected by exposure to external agents, with disease implica-

tions. Adapted from Edwards et al. [179).
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When thinking about disease etiology, one should have in mind that disease risk is best
predicted by considering genetic and environmental factors combined. There are numerous
types of environmental agents, including infectious agents, chemicals, diet, and radiation (Fig-
ure [.1)). They affect genes in multiple ways, including DNA methylation and mutations, RNA
stability, and influence gene expression and protein function. At the same time, naturally oc-
curring polymorphisms in the population may in turn affect the chemical susceptibility and
increase the disease predisposition [I81].

For better understanding the effects of the environment in the human health, and decipher
their complex mechanisms of action, we need to combine the already existing information
about drugs, pesticides, and other environmental chemicals with gene and protein interaction
data across species and how they relate to human diseases. Ultimately we would like to create a
framework for accessing human disease risk in a community, or even better, at the level of the
individual.

The purpose of this chapter is to frame drug targets in the context of cellular and disease
networks. The article Deciphering Diseases and Biological Targets for Environmental Chemicals
using Toxicogenomics Networks, in Section |4.2], describes a generic approach to understanding
the underlying molecular mechanisms that regulate chemical activity in the human body, and
discover which biological pathways they perturb. The method is based on the integration of
toxicogenomics data, chemical structure, protein interaction data, and disease and functional
annotation. The main task in the article was creating a protein-protein association network
(P-PAN), where two proteins are associated if they are affected by the same chemicals. This
network was benchmarked against refined experimental protein interaction databases (refer to
Chapter [3)).

In the last manuscript included in this thesis, entitled ChemProt: A Disease Chemical Biol-
0gy Database, we construct a database (ChemProt)!, compiling several networks developed in
previous work. This online database integrates chemical-protein annotation resources and the
disease complexes from Paper III. ChemProt was designed to support iz silico evaluation of
chemicals and environmental compounds, and the selection of new compounds based on their
activity profile against biological targets.

4.1 Chemicals and disease

Susceptibility and exposure

As explored in the previous chapters, many common human diseases seem to be polygenic,
where the incidence of defects on a single gene may not trigger the disease, but might become
detrimental if multiple variants of susceptibility genes accumulate in a disease cluster. These
susceptibility genes alone are not enough for causing disease, they rather increase or decrease
risk in combination with other genes and with exposure to external agents [18d].

Cooper [182]] relates to the example of the African-American population in the United States,
referring that this particular minority suffers from more cases of vascular disease and dementia
than the caucasian population in the same area, but that both conditions are infrequent in West

!Available at http://waww. cbs.dtu.dk/services/ChemProt-1.0/
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Africa. The explanation for the lower disease rates in the American versus African population
can be pictured as an example of gene-environment interactions.

In the broader public aspect, common diseases result from common exposures to environ-
mental conditions which we all are susceptible for, but in varying degrees. There is therefore an
impact on both the genetic and the environmental factors on the distribution of phenotypes.

Polypharmacology and side-effects

A few years back, drug design was based on the premise that drugs selectively interact with one
or two molecules, and thus preventing or treating disease. This notion has seriously been put
back, and now we know that most drugs interact with multiple targets (polypharmacology).
For some drugs this effect is beneficial, and probably essential in psychiatric medication [£83].
A simplistic workflow for beneficial polypharmacology can be seen in Figure 1.2, where one
compound acts on two different targets that are part of the same pathway, therefore poten-
tiating its action and triggering a bigger phenotypic response. Other therapeutic drugs have
been withdrawn from the market due to serious adverse side-effects, because they interact with
molecular targets other than those they were designed for.

Target 1
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Figure 4.2: Compound 1 is a polypharmacology example: one drug affects two molecular targets from the same
pathway, potentiating the phenotypical change. Compound 2, on its hand, targets a different molecule and is
chemically dissimilar, but disturbs the same pathway as compound 1, resulting in a similar phenotype.

Side-effect similarity has also been used to infer drug targets, even on chemically different
drugs and therapeutic indications [184]. Drug side-effects could be due to interaction with the
primary or additional targets, downstream network perturbations, protein interaction, drug-
drug interference, dosage effects, or problems in the metabolization of the drug.

Systems chemical toxicology

Data integration at various levels can help predicting the adverse effects caused by drugs and
environmental chemicals, and contributing for lowering drug development costs. By taking
toxicology data and combining it with gene and tissue resolution, we can better pinpoint where
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the molecular targets for each compound are, and contribute for an earlier detection of side-
effects.
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Figure 4.3: Overlap between chemicals in the different target systems of the human body. Systems are connected
according to their common chemicals. Area of the circle is proportional to the number of chemicals targeting the
system, and edge thickness represents the number of common chemicals between two systems. Figure by Audouze
et al., in preparation.

Figure [4.3 is an example of a such approach, where we took toxicology data for 25,656
chemicals annotated for 11 systems in the human body and checked which chemicals were
targeting more than one system in the human body. The idea of the manuscript (Audouze et al.,
in preparation) is to connect each system to it's component tissues, and integrate them with
gene and protein data, and chemicals, thus achieving tissue and protein resolution of chemical

adverse effects.
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Abstract

Exposure to environmental chemicals and drugs may have a negative effect on hu-
man health. A better understanding of the molecular mechanism of such compounds is
needed to determine the risk. We present a high confidence human protein-protein asso-
ciation network built upon the integration of chemical toxicology and systems biology.
This computational systems chemical biology model reveals uncharacterized connections
between compounds and diseases, thus predicting which compounds may be risk factors
for human health. Additionally, the network can be used to identify unexpected po-
tential associations between chemicals and proteins. Examples are shown for chemicals
associated with breast cancer, lung cancer and necrosis, and potential protein targets for
di-ethylhexyl-phthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxin, pirinixic acid and perme-
thrine. The chemical-protein associations are supported through recent published stud-
ies, which illustrate the power of our approach that integrates toxicogenomics data with
other data types.

Introduction

Humans are daily exposed to diverse hazardous chemicals via skincare products, plastic cups,
computers and pesticides to mention but a few sources. The potential effect of these environ-
mental compounds on human health is a major concern [179, [83]]. For example, chemicals
such as phthalate plasticizers have been widely linked to allergies, reproductive disorders and
neurological defects. Humans are intentionally exposed to drugs used for treatment and cure
of diseases. Many drugs affect multiple targets and may interact or affect the same proteins
as environmental chemicals [184--188]. The mechanism of action of these small molecules is
often not completely understood and can be associated to adverse and toxic effects through for
example drug-drug interactions [£89]]. There is thus a need to improve our understanding of
the underlying mechanism of action of chemicals and the biological pathways they perturb to
fully evaluate the impact of small molecules on human health.

An essential step towards deciphering the effect of chemicals on human health is to identify
all possible molecular targets of a given chemical. Various network-oriented chemical pharma-
cology approaches have been published recently to identify novel protein candidates for drugs,
using structural chemical similarity [183, 184, 190, f91]]. For example Keiser ez al. [19d] applied
network analysis to drugs and their targets. The authors identified unexpected molecular tar-
gets such as muscarinic acetylcholine receptor M3, alpha-2 adrenergic receptor and neurokinin
NK2 receptor for methadone, emetine and loperamide, respectively. Additionally, recent stud-
ies have demonstrated that chemicals could be classified based upon their effect on mRNA
expression detected by microarrays 192, £93]]. Lamb er al. [192] showed that genomic signa-
tures could be used to recognize drugs with common mechanism of action allowing discovery
of unknown modes of action. Despite the explosion of chemical-biological networks, the chem-
ical toxicity remains a major issue in human health. Analysis of environmental chemicals with
similar gene expression profiles is still lacking. With the recent advances in toxicogenomics,
information on gene/protein activity in response to small molecule exposures becomes more
available. This provide necessary data to develop computational systems biology models to pre-
dict both high level associations (linking chemical exposures to diseases) and more detailed
associations (linking chemicals to proteins).
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In this paper we present a method that can associate chemicals to disease and identify po-
tential molecular targets based on the integration of toxicogenomics data, chemical structures,
protein-protein interaction data, disease information and functional annotation. The core of
our procedure is derived from the ‘target hopping’ concept defined previously [184]. But in-
stead of considering only binding activity, we extended the concept to gene expression. If two
proteins are affected with two chemicals, then both proteins are deemed associating in chem-
ical space. Our approach is not only a statistical model but mimics the true biological system
by constructing a network of associations between human proteins defined as Protein-Protein
Association Network (P-PAN). We have validated our network by comparison with two high
confidence protein-protein interaction (PPI) networks, and by assessing the functional enrich-
ment of clusters in the network generated. The P-PAN revealed both known as well as many
novel surprising connections between chemicals and diseases or proteins. We provide litera-
ture support for some of the unexpected associations, such as the connection between diethyl-
hexylphthalate (DEHP) and gamma-aminobutyric acid A receptor beta target [[194], as well as
between apocarotenal, a chemical found in spinach, and necrosis. This illustrates the usefulness

of an approach that integrates toxicogenomics data with other diverse data types.

Results

Based on the Comparative Toxicogenomics Database (CTD) [181], we constructed a human
P-PAN. A workflow of the strategy is shown on Figure [1.4. We extracted 42,194 associations
between 2,490 chemicals and 6,060 human proteins from the CTD. We mapped compounds
to chemical structures from PubChem and extracted their indication of use from Medical Sub-
ject Headings (MeSH?) to classify them as either drugs (MeSH: ‘Pharmaceutical Actions’) or
environmental chemicals (MeSH: “Toxic Actions’ and ‘Specialty Uses of Chemicals’).

In the CTD, drugs and environmental compounds are claimed to be associated with toxi-
cologically important proteins. To estimate how much the information from the CTD differs
from available data on pharmacological action of drugs, we compared the data shared between
CTD and DrugBank, as of May 2009 [[194]]. DrugBank is a repository of pharmacological ac-
tion for ‘Food and Drug Administration’ approved drugs. From the 1358 drugs gathered in
DrugBank, 420 drugs matched in CTD. Interestingly, whereas 1403 proteins are associated to
these drugs in DrugBank, only 194 proteins are found in both databases. For example, accord-
ing to Drug Bank celecoxib, a known non-steroidal anti-inflammatory drug, is associated to
two metabolizing enzymes: the Cytochrome P450 2C9 (CYP2C9) and the Cytochrome P450
2D6 (CYP2D6) and to two drug targets: the Prostaglandin G/H synthase 2 (COX-2) and the
3-phosphoinositide-dependent protein kinase 1 (PDPK1). In the CTD, celecoxib is linked to
33 human proteins including CYP2Cg and COX-2. The toxicity information extracted from
CTD is relatively different to the known pharmacological action of drugs and should be con-
sidered as a complementary source of information.

Structure-target relationship

To investigate the assumption that two compounds sharing similar structure can potentially af-
fect the same molecular targets, we compared chemical properties of the compounds collected

2nttp://www.nlm.nih.gov/mesh/MBrowser.html
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Figure 4.4: Workflow of the strategy for generating a human P-PAN and predicting novel associations. DATA: Ex-
traction and filtering of human protein-chemical associations from CTD. The visualization of the chemical space by
Principal Component Analysis projection confirms that drugs (D) and environmental chemicals (E) shared struc-
tural properties, and then may affect similar protein targets. The two first principal components, which explained
about 44% of the variance on the calculated properties are shown (green: pharmaceutical actions, red: toxic actions
and blue: specialty uses of chemical). All proteins (P) were mapped to Ensembl gene identifiers to facilitate further
data integration. MODEL GENERATION: Construction of the P-PAN. The P-PAN was created from associations
present in the CTD (dashed edge lines) between chemicals and proteins. In the P-PAN, two proteins are connected
to each other (edge lines) if they share a common chemical. A weighted score, represented by the width of the
black edges, was assigned to each protein-protein association. It represents the strength of the network between two
proteins as defined by the number of shared compounds for both molecular targets. Selection of a scoring function
and a high confidence P-PAN after overlaps comparison with two human interactomes (PPIs) based on experi-
mental evidences. Clustering of the P-PAN and evaluation of the biological meaningful of the clusters using Gene
Ontology annotations. PREDICTION: (1) Prediction of novel molecular targets for chemical using a neighbor
protein procedure. DEHP (orange) is known to be connected with blue proteins and is predicted to be associated
with green proteins. A confidence score was calculated for each protein, represented by the width of the edges; thick
edge for high score to thin edge for low score. (2) Prediction of disease associated with chemical after integration of
protein-disease information using GeneCards in clusters. As example, apocarotenal, a compound found in spinach
is predicted to be link to necrosis.
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from the CTD. The chemicals were characterized by 5o properties calculated from the struc-
ture, including the molecular mass and affinity for a lipid environment. The distribution of
properties, as it appears in a multi-dimensional properties space, was projected and visualized
in two dimensions using principal component analysis (PCA) (shown in Figure [1.4). There
is substantial overlap in the PCA projections between environmental chemicals and drugs in-
dicating that they can potentially affect the same protein targets. We also compared the oral
bioavailability profiles of compounds based on standard Lipinski [[96] and Veber [[197] rules.
Again, overlaps were observed, indicating that environmental chemicals mimic drug properties
(see Figure S13). These results confirm that it is reasonable to generate a network by integrat-
ing toxicogenomics knowledge from both drugs and environmental compounds, as they share
many properties.

Generating a high confidence human Protein-Protein Association Network

The human P-PAN was generated based on the assumption that if two proteins are biologically
affected with the same chemicals (defined as shared chemicals), they are likely to be involved
in a common mechanism of action of the chemicals. Then, two proteins are connected to each
other if they are linked to the same chemical in the CTD. The resulting P-PAN consists of 2.44
million associations. To reduce noise and select the most significant associations, we assigned
two reliability scores to each protein-protein association: a score based on hypergeometric calcu-
lation and a weighted score. The weighted score was calculated as the sum of weights for shared
chemicals, where weights were inversely proportional to the number of associated proteins for
a given compound.

We went one-step further and compared the P-PAN with two human PPI databases: (1)
a high confidence set of experimental PPIs extracted from a compilation of diverse data
sources [47] and (2) PPIs based on an internal consistent single data source [48]. Our P-PAN
performed well compared to both PPIs. Based on the calibration curves (Figure S2), we con-
sidered a threshold that capture good overlaps between our P-PAN and the PPI networks for
different reliability scores thus reducing our P-PAN to around 200,000 reliable associations.
Using this approach, the molecular target predictions are limited to the 3,528 proteins present
in the P-PAN. To confirm that biological information is not lost when selecting only 8% of the
entire P-PAN, we compared functional enrichment for the complete network (6,060 proteins)
and for the high confidence sub-network (3,528 proteins) using Gene Ontology (GO) [£9§].
For example cell proliferation (p-values of 3.22¢-36 and 1.46e-27 for the large network and the
sub-network, respectively) and protein binding (p-values of 1.2e-72 and 4.13¢-47 for the large
network and the sub-network, respectively) were the most overrepresented terms.

Since proteins tend to function in groups, or complexes, an important step has been to verify
that our high confidence network mimics true biological organization. This task is commonly
executed using graph clustering procedures, which aim at detecting densely connected regions
within the interaction graph. Two clustering methods have been applied to our network. The
molecular complex detection (MCODE) approach [199] that allows multiple clusters assig-

nation for a protein, mimicking the reality as a protein can participate in several complexes

3Supplementary Information, online at http://www.ploscompbiol.org/article/info:doi/10.1371/
journal .pcbi.1000788#s5

75


http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000788#s5
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000788#s5

4. FROM CHEMICALS TO DISEASE

76

simultaneously. On the other hand, the markov cluster algorithm (MCL) [20od] which assign
one protein to a unique cluster has been shown to be superior to other graph clustering meth-
ods in recent studies [201, 2o2]. Applied on our network, MCODE extracted few large core
clusters and several tiny clusters (possibly singleton clusters). The MCODE approach results in
a clustering arrangement with a weak cluster-wise separation. Compared to MCL, MCODE
yielded a lower number of clusters, with a higher number of proteins per cluster. Only 35
clusters varying in size from five to 845 proteins were extracted. Using the MCL algorithm we
obtained a more heterogeneous separation with 58 clusters varying in size from five to 462 pro-
teins. Therefore, to identify the biologically meaningfulness of our network, we used complexes
extracted using the MCL method. Each cluster was then investigated for functional enrichment
based on GO terms. To ensure the high quality of functional annotations we used only annota-
tions experimentally supported or with traceable references. Hypergeometric testing was used
to determine GO functional annotation overrepresented amongst each cluster. The two top
scoring molecular functions found were heme binding (p-value of 6.60e-25, cluster 4) and
glucuronosyl transferase activity (p-value of 2.34e-21, cluster 12). Regulation of apoptosis (p-
value of 1.67¢.17, cluster 2) and oxidation reduction (p-value of 6.67¢-14, cluster 4) were the
most highly enriched categories in the biological process branch of the GO. This analysis thus
confirms that clusters in the network, and therefore the proteins associated with each other,
are functionally coherent. This was further evidence that the organization of the network is
meaningful.

Diseases associated to clusters

In the clusters of the P-PAN, proteins are more connected with other proteins within the clus-
ter than with the other targets in the network. As proteins are associated based on their shared
relationship with chemicals, proteins within a given cluster tend to be more linked to spe-
cific compounds. It is thus possible to find associations between diseases and the chemicals
that underlie the protein-protein associations within the cluster using protein-specific disease
annotations. For each cluster, we investigated if specific disease annotation was found more
frequently than expected by using protein-disease information [203]]. We identified several dis-
eases associated with specific clusters. These included the two most common types of cancer,
breast cancer (cluster 1, p-value of 9.67¢-18) and lung cancer (cluster 12, p-value of 4.84¢-
12), as well as necrosis (cluster 2, p-value of 2.26e-12), ichthyosis (a skin disorder associated to
cluster 4, p-value of 1.41e-5), retinoblastoma (cluster 7, p-value of 9.46e-8) and inflammation
(cluster 8, p-value of 1.55e-5).

Mining the network for chemicals associated with disease

To predict which chemicals may affect human health, we then analyzed selected clusters to iden-
tify new chemical-disease associations (see Table [{.1)). When linking diseases to compounds, it
is important to keep in mind that there is no direction in the association, i.e. it is not possible
from the network to separate positive from negative associations between a chemical and a dis-
ease. Discriminating between whether a compound prevents or causes disease requires manual

interpretation of the association.
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Cluster ID Disease Chemical name p-Value

I Breast cancer estradiol 7.68e-134

(462 proteins) (128 proteins) bisphenol A 4.46€-92
PCBs 1,15¢-88
genistein 2.20e-78
Sfulvestrant 7.05e-63

12 Lung cancer thimerosal 1.57e-26

(10 proteins)
DNCB 3.29€-22
(12 proteins)

(59 proteins) (29 proteins)

styrene 7.78e-06
2 Necrosis arsenic disulfide 4.76e-35
(433 proteins) (122 proteins) apocarotenal 1.63e-29

(8 proteins)
doxorubicin 2.66e-26

Table 4.x: Mining the P-PAN for chemicals associated with breast cancer, lung cancer and necrosis, using a cluster-
ing procedure. Chemicals already known from the literature to be associated to disease are shown in italic. In bold
are the chemicals significantly associated to disease, which are unknown to be disease-causing chemical from the
literature. The number of proteins is shown in brackets for each cluster, disease and novel association. As example,
among the 433 proteins associated to cluster 2, 122 are known to be linked to necrosis. Among these 122, 8 are
connected to apocarotenal in CTD.

One of the clusters showed high enrichment for breast cancer. The most significantly asso-
ciated chemicals are already known from the literature to be related to cancer, thus supporting
the clustering quality of the P-PAN. Among the most significantly associated chemicals are the
well-known polychlorinated biphenyls (PCBs). PCBs are used for a variety of applications i.e.
flame retardants, paints and plasticizers. After being banned due to their toxicity, they still per-
sist in the environment. Previous results suggest that specific PCBs may indeed be associated
with breast cancer [204]. Several organizations (EPA, IARC) have classified PCBs as probable
human carcinogens. When we inspected another cluster highly connected to lung cancer using
our P-PAN method, thimerosal, dinitrochlorobenzene (DNCB) and styrene were significantly
associated with this cluster. Thimerosal and DNCB are not known lung cancer-causing chem-
icals, while the last compound, styrene has been classified as a possible carcinogen. Thimerosal
is an organomercury chemical widely used as preservative in health care products and in vac-
cines. It may have possible adverse health effects such as a role in autism and in nervous system
disorders [203]] as well as possible gene-toxic effects to human lymphocytes [20d]. No study
has previously related it to lung cancer. The second chemical DNCB is known to be a skin
allergen that may cause dermatitis. Genes associated with allergies were shown to be up regu-
lated in rat lung tissue after DNCB exposure [207], but no direct link to lung cancer has been
demonstrated so far. Another interesting finding is the association between apocarotenal and
necrosis. Apocarotenal, a natural carotenoid found in spinach and citrus, is used as a red-orange
coloring agent (E160E) in foods, pharmaceuticals and cosmetics products. No direct evidence
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has been found that links apocarotenal to necrosis. However, iz vitro and in vivo studies [208§]
have suggested that spinach may be a good anti-cancer agent. This is in line with epidemiologic
studies that have shown that those who consume higher dietary levels of fruits and vegetables
have a lower risk of certain types of cancer [209] due to the presence of carotenoids. Further-
more, carotenoids have been defined as chemopreventive agents [21d]. Studies have established
associations between carotene and beta-carotene with reduced risk of prostate cancer [211] or
breast cancer [212]. The prediction that apocarotenal is positively associated to necrosis and
could prevent certain types of cancer is thus indirectly supported by other studies. The other
chemicals significantly associated to disease (Table [4.1)) are discussed in the supplementary text
(see Text S1).

Predicting novel molecular targets for chemicals

Besides revealing disease-chemical associations, the network can be used to predict novel targets
for chemicals. It has been shown that many small molecules affect multiple proteins rather than
a single target, and that proteins sharing an interaction with a chemical are targeted by the same
chemicals [L9d]. Based on the CTD data available, strong promiscuities between some proteins
exist. For example, more of 25% of chemicals annotated to estrogen receptor 1 (ESR1) affects
also progesterone receptor (PGR). In the same order, cytochrome p450 2D6 (CYP2D6) and
cytochrome p450 2C9 (CYP2Co) shared one-third of their respective associated compounds.
By the term affected, we consider effects such as up regulated, down regulated, agonist, an-
tagonist and inhibitor. Then, our network can not be used to identify chemical synergies or
opposite effect on proteins. Thus, if two proteins are affected by two chemicals and one of the
proteins is further deregulated by an additional chemical, then it might be that both proteins
are in fact deregulated with the same three chemicals. Based on this assumption and in order to
suggest novel associations between chemicals and proteins, a neighbor protein procedure was
used which scored the association between each protein and each chemical (see Materials and
Methods). Molecular targets known to be associated with a chemical were extracted from the
CTD, and the P-PAN was scanned for proteins associated with a high score. The significance
of enrichment was calculated by random testing (for the confidence scores see Text S2), and
sub-networks were subsequently ordered according to their significance. Four examples of var-
ious chemicals are presented in Table (other case stories are shown in Table S1).
To estimate the performance of our approach for approved drugs, we analyzed the level of recall
and precision obtained for the 420 common drugs between DrugBank and CTD. We obtained
a recall and a precision of 5.91% and 3.77% respectively, corresponding to the percentage of
interactions in DrugBank retrieved and percentage of interactions in DrugBank from all inter-
actions predicted obtained from CTD data and from the neighbor protein procedure. These
values illustrate that information between the two data sources are relatively different.

Examples of proteins associated to chemicals

Phthalates, mainly used as plasticizers, have received a lot of attention as environmental com-
pounds because they are potential human carcinogens. As there are many phthalates, we focused
on Di-EthylHexyl Phthalate (DEHP) that has been associated with more proteins compared
to other phthalates such as additional information on kinases (e.g. mitogen-activated protein
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kinase 1, and mitogen-activated protein kinase 3) [213]. DEHP is widely used due to its suit-
able properties and low cost, and is present in the general environment at high levels. Exposure
to DEHP is of particular concern with regard to developing fetuses where it is believed to cause
malformation of reproductive organs and neurological defects [214]. Using our approach, sev-
eral proteins were identified as being associated with DEHP (Table [4.2 on page 81]). Cysteine
dioxygenase type I (CDo1) and peroxisome proliferator-activated receptor alpha (PPARA), the
two top scoring proteins, are already known in the CTD and from the literature [213], 214] as
molecular targets for DEHP. Six other high ranking proteins are new potential DEHP molec-
ular targets which are not recorded in the CTD (thus not input data). Among them, four
gamma-aminobutyric acid A (GABA) receptors were predicted as potential DEHP molecular
targets. These associations are supported by a recent study showing that DEHP can modulate
the function of ion channels as GABA receptors in a manner similar to volatile anesthetics in
experiments on expressed receptors [194]. This makes sense because the GABA neurotrans-
mitter system has been implicated in the pathogenesis of bipolar disorders (neurological dis-
orders) via gamma-aminobutyric acid receptor subunit alpha-1 (GABA«1) [217], and DEHP
is also associated with neurological defects [214]. In addition to GABA receptors, we identi-
fied several other candidates including proopiomelanocortin (POMC) and a cytochrome P450
(CYP3A11). We looked at another environmental chemical, the 2,3,7,8-TetraChloroDibenzo-
p-Dioxin (TCDD), which originates from burning or incineration of chlorinated industrial
compounds. TCDD is believed to cause a wide variety of pathological alterations, with the
most severe being progressive anorexia and body weight loss [218]. TCDD is also known to be
a neurotoxin leading to neurodevelopmental and neurobehavioral deficits [219, 22d], and ac-
cumulating in the brain as well as other organs [221]. We identified six proteins associated
with TCDD that are not recorded in the CTD for human (Table |-2)). Among them five
are supported by literature (see Text S2). This included protein kinase C elipson (PRKCE),
known to be involved in brain tumors[222]], carnitine palmitoyltransferase I (CPT1A), 11/3-
hydroxysteroid dehydrogenase type 1 (HSD11B1) and apolipoprotein B (APOB) which are
all linked to obesity [223--224]. Furthermore, we investigated in detail the drug pirinixic acid
(PA) (also named WY14,643), which is a peroxisome proliferator-activated receptor (PPAR)
agonist with strong hypolipidemic effects. PA was never approved for clinical use due to hep-
atocarcinogenesis adverse effect shown in animal studies [22§]. To date there is no evidence
that PA promotes carcinogenesis in humans [227], and this has spurred new studies for iden-
tifying cellular processes that are capable of responding to PA. Among 11 molecular targets
identified and not recorded in the CTD (Table |4.2]), only five are supported by the literature
(see Text S2). For example the expression of the C3 protein, an acylation stimulating protein
involved in necrosis and afibrinogenemia (blood disorders), has been shown to be affected by
PA in rats [228]. Finally we studied proteins associated with permethrin in more detail. Perme-
thrin is a widely used insecticide, acaricide and insect repellent, classified by the US EPA as a
likely human carcinogen, but still used in healthcare for the treatment of lice infestations and
scabies. Four proteins not recorded in the CTD were identified as associated with permethrin.
Three of them are supported by literature (see Text S2 for details) including a cytochrome P4so
(CYP2B1) [229, 230] and sex hormone-binding globulin (SHBG) [231], which are proteins
linked to the endocrine system. These findings suggest a mechanism by which chronic expo-
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sure of humans to pesticides containing this compound may result in disturbances in endocrine
effects related to androgen action.

The examples we provide include both known and new protein associations with a given
chemical, and many of the novel associations are supported by the literature. We compared our
approach with STRING (version STRING 1 [232]]) a high-confidence protein-protein associ-
ation network, to see if the findings generated by the current approach are also found by other
existing methods. The STRING network includes direct (physical) and indirect (functional)
associations derived from diverse sources as genomic context, high throughput experiments,
co-expression and literature. As a test example, we used the 15 proteins associated with DEHP
in the CTD to query the P-PAN by a neighbor protein procedure. The same 1§ proteins were
also used to query the STRING network. Subsequently we compared the predicted molecular
targets between the two networks (P-PAN and STRING). In the resulting STRING network
none of the GABA receptors were found (see Figure S3). The STRING network showed a
clear tendency to associate phthalates with kinases and nuclear receptors. This example demon-
strated that our approach was complementary to other association approaches. This highlights
the value of integrating various sources of data to understand potential toxic effects on human

health caused by chemical exposure.

Discussion

We propose an approach different from existing computational chemical biology networks,
which primarily integrate drugs information, to identify new molecular targets for chemicals
and to link them to diseases. In our approach we have integrated toxicogenomics data for drugs
and environmental compounds. The ability to make new findings using a different network
is illustrated by a comparison with a similar method, showing the capacity of our P-PAN to
identify novel chemical-protein associations. Using phthalate as an example, our model suggests
potential associations between DEHP and GABA receptors, which have not been predicted
previously.

An extension of this network by integrating more data, for example other chemical-protein
associations or dose levels for which a compound may affect human health, would be beneficial
to the proposed approach. Paracelsus (1493--1541) is often cited for his quote, “all things are
poisons and nothing is without poison, only the dose permits something not to be poisonous”.
This emphasize that the dose of a chemical is an issue to consider in the deregulation of systems
biology. Nevertheless, a global mapping could allow a better understanding of adverse effects
of drugs and toxic effects of environmental compounds. This could be used as a new approach
for risk assessment and regulatory decision-making for human health.

Among the examples presented, some predictions are supported by literature for other or-
ganisms. Regarding toxicogenomics, the available human data are generally sparse compared to
rodents. Data on toxicity --- adverse effects of chemicals on humans --- can be acquired through
epidemiologic studies and from occupational, accident-related exposures as intentional hu-
man testing of environmental compounds remains limited. However, differences exist between
model animal and human responses to chemicals, including differences in the type of adverse
effects experienced and the dosages at which they occur. The differences may reflect variations
in the underlying biochemical mechanisms, in metabolism, or in the distribution of the chem-
icals. As an example, bisphenol A (BPA) does not affect proteins in a similar way across species
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Chemical Known Cpscore* Novel protein ~ Cpscore® Literature
protein
DEHP CDO1 13.23 GABAS1 5.46 Yes
PPARA 9.48 POMC 5.44 Yes
SUOX 4.35 CYP3A11 5.40 Yes
(15 proteins) GABAS2 4.32 Yes
GABA~2 4.32 Yes
GABA«o1 4.26 Yes
TCDD HSPA9B 82.69 PRKCE 10.17 Yes
SLC2A4 82.69 POMC 8.97 Yes
TRIP11 82.69 CPTzA 6.96 Yes
TSP 82.69 HSD11B1 6.39 Yes
EPHX2 75.77 mvp 6.77 No
MT2A 10.85 APOB 5.61 Yes
(90 proteins)
PA CYP4X1 5.67 CHST1 5.19 No
PPARA 2.53 CHSTy4 5.19 No
CES1 1.45 CST 3.19 Yes
SULT2A1 0.87 ABCGs 2.61 No
CYP1A1 0.37 Cs3 2.80 Yes
ADRA2A 1.34 Yes
CYBsA I.21 No
ADRAIA 1.08 Yes
CRHR2 1.04 No
CYP2A13 0.93 No
ALDH3 0.91 Yes
(5 proteins)
Permethrin AR 4.67 CYP2B1 4.43 Yes
WNT10B 4.12 SHBG 3.51 Yes
PGR 3.75 CYP2B6 2.89 No
ESR1 3.31 NRil3 2.64 Yes
TFFx 3.1§
NRil2 2.94

(17 proteins)

Table 4.2: Predicting novel molecular targets for chemicals. *Proteins known to be associated to a compound
were extracted from the CTD. In brackets is the total number of known proteins used to query the P-PAN. To
find novel protein targets (in bold) associated to a chemical, a neighbor proteins procedure was used which scored
the association between proteins and chemicals (cpscore). Among the novel predicted proteins (thus not input
data), some are supported by literature, highlighting the usefulness of the P-PAN to identify new chemical-protein
associations.
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(Figure [¢.9). In the human systems studied to date, BPA does not affect the proto-oncogene
c-FOS (FOS) and the mitogen-activated protein kinase 8 (MAKP8) but seems to modify their
expression in rodent species. BPA binds and modifies the activity of the estrogen receptor alpha
(ESR1) in a very conservative way across organisms [I81]. BPA has an ability to function as
an estrogen like receptor (ER) agonist, and thus has the potential to disrupt normal endocrine
signaling through regulation of ER target genes e.g. androgen receptors, estrogen receptor, pro-
gesterone receptors. There is a need to integrate data with cross-species extrapolation in order
to have a more accurate understanding of the human risk from chemical exposure.

The major limitation of our integrative systems biology approach is that the molecular tar-
get predictions are limited to the 3,528 proteins present in our P-PAN, which represent only
15% of the estimated human proteome [233]]. Hence, the current lack of high quality data
is the limiting factor in approaches such as the one described here. Today high throughput
methodologies result in available large scale data in both chemical biology and systems biology,
but these data are discipline specific [234] . There is an evident need for the development of
databases [23] to integrate disparate datasets such as toxicogenomics data in order progress in
systems biology research. In addition, the results of the disease-compound association analysis

will improve in the future as newer, more complete and curated data will become available.

Material and Methods
Data set

We downloaded the publicly available Comparative Toxicogenomics Database (CTD) as of
June 26, 2008 [181] . The CTD contains curated information combining drug and environ-
mental chemical data associated with proteins. We selected 42,194 associations between 2,490
unique compounds and 6,060 molecular targets known to be involved in human disease. Dif-
ferent associations are presented in the CTD such as ‘chemical x results in increased expression
of protein Z’ or ‘compound x binds to protein . Gene expression data are essentially present in
the CTD such as a chemical can increase, decrease or affect a gene expression. However, only
few binding data are present in CTD and therefore integrated in our network: 3189 in total
among the 42,194 associations. Scripts were used to remove associations with negation such as

‘chemical x does not affect protein z.

Quality of chemical and protein annotations

To verify the uniqueness of chemicals, chemical names extracted from the CTD were checked
using PubChem* to avoid synonymous names for the same compound. The few chemical names
not retrieved via the database were manually verified. To determine ovetlaps with protein-
protein interaction databases and facilitate further data integration, the CTD protein names
were mapped to the corresponding Ensembl IDs [234] as of June 26, 2008. Only 1.5% of the
42,194 chemical-protein associations could not be clearly identified.

4http://pubchem.ncbi.nlm.nih.gov/, as of June 26, 2008.
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Mus musculus
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Oncorhynchus mykiss
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Figure 4.5: Cross-species comparative toxicogenomics for bisphenol A (BPA). Molecular targets are represented as
nodes, and colored by gene family. Nodes presence represent available information extracted from the CTD and
node absence are the unknown information. Colored nodes defined that BPA affect the protein, while nodes are not
colored when BPA does not affect the protein. This figure highlights similarities and differences existing between
animal model and human responses to chemical exposure.
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Structure-target relationship

To investigate chemical space of drugs and environmental compounds, 50 two-dimensional
properties were calculated for each structure extracted from PubChem. To visualize them, prin-

cipal component analysis (PCA) was performed. All necessary data were calculated using the
MOE software?

Generating a high confidence human Protein-Protein Associations Network

Relevant human chemical-protein associations collected from the CTD were used to cre-
ate a P-PAN. The maximum number of molecular targets assigned to one compound ‘tert-
Butylhydroperoxide’ was 1,189 and the maximum of chemicals assigned to one protein, the
cytochrome P450 3A4 (CYP3A4), was 276. The P-PAN was generated by instantiating a node
for each protein, and linking by an edge any protein-protein pair where at least one overlap-
ping chemical was identified. Scripts were used to convert the protein-protein associations into
a non-redundant list of associations. If proteins A and B are associated, the network may have
two associations, A-B and B-A. Only one of these associations was retained in the P-PAN.
We assigned two reliability scores to each protein-protein association: a score based on hyper-
geometric calculation and a weighted score. The weighted score was calculated as the sum of
weights for overlapping compounds, where weights were inversely proportional to the number
of assigned proteins. The resulting P-PAN is a complex structure containing a total of 2.44

million unique associations between 6,060 human proteins.

Validating the protein-protein association score

The reliability of the weighted score was confirmed by fitting a calibration curve of different
scores against Lage's PPIs [47] (version 2.9) and Vidal's PPIs [48]. Only 35,000 high confidence
experimental interactions were extracted from Lage's PPI, which contains interactions present
in the largest databases (Reactome, KEGG, ...) and data inferred from model organisms. Vi-
dal's PPIs are based on an internal consistent single data source defined using yeast two-hybrid
system and contains 3111 interactions.The overlaps of our P-PAN scores and Lage/Vidal PPIs
are shown in Figure S2. The benchmark revealed that the weighted score is superior to a score
calculated as the negative logarithm of p-values from a test in hypergeometric distribution and
a simple overlap count. To estimate the robustness of the model, four thresholds selected from
the ‘weighted score’ curves (5%, 8%, 12.5% and 17%) of the complete P-PAN were used to per-
form prediction for DEHP. At 5%, 73,000 associations between 2105 proteins were extracted.
The number of proteins is relatively stable at 8% and 12.5%. However, the number of associa-
tions increased significantly from 200,080 to 306,000 including lower score associations in the
output file of prediction. The threshold of 17% corresponds to 415,000 associations between
3894 proteins. All thresholds showed a good prediction with the GABA receptors for DEHP.
As the 12% threshold already added some more noise in the prediction, we decided to not in-
clude more proteins, in order to keep the most significant associations. We then considered a
threshold of 8%, represented by the vertical line in Figure S2, which captured a good overlap

>Chemical Computing Group version 2007.09.
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between our P-PAN and the PPI networks. This selection represents 200,080 associations of
the complete P-PAN.

Among the 280,000 high confidence associations selected, 3,528 proteins were identified,
and these were significantly enriched among the high scoring protein-protein associations as
shown in Figure S2 (861 Lage's PPI interactions corresponding to 24.4% were found among
the top 5% of the high scoring protein-protein associations). By comparison, only 1,852 of
the high confident interactions from Lage were identified in a random P-PAN created by node
permutation, and no enrichment was seen for the random network. As example, the selection
of high confidence associations allowed to conserve only 803 proteins from the 1189 proteins
assigned to the ‘tert-Butylhydroperoxide’.

P-PAN clustering

A high confidence sub-network of 280,000 protein-protein associations was selected which
contained 3,528 proteins. This sub-network was highly interconnected, with the majority of
proteins belonging to a single large cluster. In order to increase the resolution and facilitate bio-
logical interpretation, two clustering methods were applied to the sub-network, MCODE [199]
and MCL [2o0d]. We used the default settings for MCODE (fluff option set to 0.1, mode score
cutoff set to 0.2, degree curoff set to 2), and obtained 35 clusters. One major drawback of this
algorithm is that not all the proteins in the network were clustered. We used the MCL algo-
rithm with scheme and granularity parameters set to 7 for highest performance and granularity.
With the MCL approach we identified a total of 58 clusters as strongly interconnected, with a
minimum size of 5 proteins. These clusters were linked together into a new network consisting
of a scored cluster-cluster association network. The association score between each cluster pair
was calculated from the mean of the P-PAN between each pair of clusters. Each cluster was
investigated for functional analysis based on the three Gene Ontology categories (a) molecular
function, (b) biological processes, and (c) cellular components as of January 2009. To reduce
the noise and improve the quality of the functional annotation, we only used the functional
annotation if it was experimentally supported or had traceable references. The following GO
evidence codes were allowed: IMP (Inferred from Mutant Phenotype), IGI (Intetfered from
Genetic Interaction), IPI (Inferred from Physical Interactions) and IDA (Inferred from Direct
Assay) and TAS (Traceable Author Statement). At time of use the molecular function category
contained 5,981 proteins, the biological processes category 5,196 proteins, and the cellular
components 5,151 proteins. We compared human proteins present in GO categories with pro-
teins extracted from the CTD; 14.3% of the CTD proteins could not be annotated for the
molecular function, 16.6% for biological processes and 14.9 % for cellular components.

To identify chemicals associated with disease, protein-specific information such as involve-
ment in disease was integrated in each cluster. The Online Mendelian Inheritance in Man
database (OMIM)® and the GeneCards database” were considered as sources of protein-disease
connections. Various clusters were investigated. For example, cluster 1 contained 462 proteins.
Using GeneCards, 269 proteins were retrieved with disease annotations. Amongst these 269

Shttp://www.ncbi.nlm.nih.gov/omim/, ]uly, 2009.
7February, 2008.
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proteins, 128 were associated to breast cancer (with give a p-value of 9.67¢-18 for breast can-
cer to cluster 1). Using OMIM, only 90 proteins among the 462 were retrieved with disease
annotations. Looking at the cluster enrichment with OMIM, we obtained at the top a non
significant p-value of 0.0048 (corresponding to two proteins for paget disease of bone). As
another example, we analyzed the second cluster. Cluster 2 contained 433 proteins. 281 pro-
teins were annotated to diseases in Genecards, for only 78 proteins in OMIM. Additionally,
cluster 2 has a significant p-value of 2.26e-12 using GeneCards information for necrosis. Ac-
cording to these results we decided to use GeneCards as a source of protein-disease relation-
ships. To avoid too many false positive from Genecards, we set a significance cut-off value
of the GeneCards-AKS2 score based on a comparison with OMIM. This was done by over-
lapping common protein-disease associations from Genecards against OMIM (see Figure S4).
The protein-disease connections were kept with a minimum AKS2 score of 6o and p-values
were calculated for each disease present in clusters. Then, chemical information from the CTD
was integrated with each cluster and p-values were assigned to each chemical. All p-values ob-
tained were calculated using hypergeometric testing, and were corrected for multiple testing

with Bonferroni correction. The significance cutoff for the corrected p-values was set to 0.05.

Neighbor protein procedure

To predict molecular targets for a chemical, a network-neighbor's pull down was done in a
three steps procedure: (1) Selection of the input protein(s): Extraction of the protein(s) known
to be associated with the selected chemical from the CTD. (2) Identification of network(s) sur-
rounding the input proteins by a neighbor proteins procedure. In this procedure, our P-PAN
was queried for the input proteins, and associations between these were added. Next, the first
order interactors of all the input proteins were queried and added. For each neighbor, a score
was calculated taking into account the topology of the surrounding network, based on the ra-
tio between total associations and associations with input proteins. Molecular targets with a
score higher than the threshold (o0.1) were kept in the final sub-network(s). This node inclu-
sion parameter is in the conservative end of the optimal range for protein-protein interaction
networks [l7]. As a final step all proteins in the complex were checked for associations among
them and the missing one were added. (3) Establishment of a confidence score for the sur-
rounding network (cscore) and of a score for each protein (cpscore): Each of the pulled down
complexes was tested for enrichment on our input set by comparing them against 1.0e4 random
complexes for the protein-protein association set to establish a cscore for each sub-network and
a cpscore for each connected proteins. The cpscore was used to rank proteins to select potential
molecular targets for chemicals. An illustration of cpscore is available on Table S2 for approved
drugs.

Postscript

All the CTD human protein-chemical associations were extracted from the CTD on June 26,
2008. Subsequent updates of CTD, as of June 25, 2009, did not change the overall trends or
conclusions of the present study.
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Abstract

Systems pharmacology is an emergent area that studies drug action across mul-
tiple scales of complexity, from molecular and cellular to tissue and organism levels.
There is a critical need to develop network-based approaches to integrate the growing
body of chemical biology knowledge with network biology, and to understand the re-
lationship between drug action and genetic susceptibility to disease. Here, we report
ChemProt, a Disease Chemical Biology database, which is based on a compilation of mul-
tiple chemical-protein annotation resources, as well as disease-associated protein - protein
interactions (PPI). We assembled more than 700,000 unique chemicals with biological
annotation for 30,578 proteins. We gathered over two million chemical-protein interac-
tions, which were integrated in a quality scored human PPI network of 428,429 inter-
actions. The PPI network layer allows for studying disease and tissue specificity through
each protein complex. ChemProt can assist in the in silico evaluation of environmental
chemicals, natural products and approved drugs, as well as the selection of new com-
pounds based on their activity profile against most known biological targets, including
those related to adverse drug events. Results from the disease chemical biology database
associate citalopram, an antidepressant, with osteogenesis imperfect and leukemia, and
bisphenol A, an endocrine disruptor, with certain types of cancer, respectively. The server
can be accessed at http://www.cbs.dtu.dk/services/ ChemProt-1.0/.

Introduction

The old drug design paradigm, i.c., drugs interact selectively with one or two targets (genes),
resulting in treatment and prevention of disease, is now challenged by several studies that show
most drugs interacting with multiple targets (‘polypharmacology’) [183, £87]. For example,
celecoxib, often considered a selective cyclooxygenase-2 non-steroidal anti-inflammatory drug
(NSAID), has been documented to be active on at least two additional targets, namely carbonic
anhydrase I and s-lipoxygenase [237]. Rosiglitazone, which has been used for the treatment
of type II diabetes mellitus, not only stimulates the peroxisome proliferator activated receptor
gamma, but also blocks interferon gamma-induced chemokine expression in Graves disease
or ophthalmopathy [238]. Polypharmacology is not always beneficial, as it often causes side-
effects: Cisapride, which acts as a serotonergic s-HT4 receptor agonist, as well as astemizole,
which blocks histamine Hr1 receptors (H1R), have both been withdrawn from all markets due
to the risk of fatal cardiac arrhythmia associated with their blockade of the hERG potassium
ion channel, an ‘anti-target’ associated to QT prolongation and ‘torsades de pointes’ [239].
However, ‘target’ and ‘anti-targets’ are dynamic attributes, as exemplified by the case of HiR
antagonists and their (in)ability to achieve clinically significant levels in the brain, influenced
by the ATP-binding cassette transporter ABCB1 (also known as P-glycoprotein), which effluxes
some of these drugs from the brain [240]. Acquiring knowledge of the complete pharmacology
profile has inspired new strategies to predict and to characterize drug-target associations in
order to improve the success rates of current drug discovery paradigms, i.c. increase the efficacy
and reduce toxicity and adverse effects [187].

As large-scale chemical bioactivity databases are being assembled, the polypharmacology and
promiscuity (i.e., low affinity bioactivity across multiple gene families) of chemicals are profiled
like pieces of a puzzle [241]. These studies are often focused on specific protein families, such
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as G-protein coupled receptors [242], nuclear receptors [243] and kinases [244], but global
pharmacology profiles of chemicals are considered as well [183), £87]. Recent chemoinformatics
advances support the development of polypharmacology data mining, e.g., via iPHACE, an
integrative web-based tool that enables pharmacological space navigation for small molecule
drugs [245]. Biological information can also be retrieved for a large set of chemical compounds
through PubChem [246], CheBI and ChEMBL [247].

Two conceptual developments support polypharmacology: systems pharmacology, aimed at
drug actions in the context of regulatory networks [248] and systems chemical biology [249],
which introduces chemical awareness in systems biology. Since proteins rarely operate in iso-
lation inside and outside cells, but rather function in highly interconnected cellular pathways,
interactome networks have been developed by data integration. Yildirim et al. [188] combined
FDA-approved drugs with a human protein-protein interaction (PPI) network (human interac-
tome) in order to analyze the interrelationships between drug targets and disease-gene products.
A similar work has been based on PubChem bioassay as source of polypharmacology [25d].
The use of side-effect similarity has been proposed on the assumption that drugs with similar
side-effects are likely to interact with similar target proteins [251]. Recent advances include a
protein-protein association network based on the chemical toxicology of environmental chem-
icals [252] and a human disease network linking disorders and disease genes to various known
phenotypes [44].

Our goal in the present work was to develop a disease chemical biology server, called
ChemProt, based on the integration of chemical-protein annotation resources that are now
accessible from large repositories, and curated disease-linked protein-protein interaction (PPI)
data [l47]. ChemProt is designed to assist the elucidation of drug actions in the context of cel-
lular and disease networks. Further to that, it allows the identification of additional genes that
may play major roles in modulating chemical response i.e. to drugs, environmental chemicals
and natural products, thus leading to new options in drug discovery and environmental chem-
ical evaluation. Lastly, the ChemProt server could contribute to drug repurposing as well as to

the investigation of chemicals related to anti-targets and adverse drug events.

Implementation
Data sources

We first gathered chemical-protein interaction data from different open source databases i.e.
ChEMBL (version chembl_os) [247], BindingDB [ 3], PDSP Ki Database [254], DrugBank
(version2.5) [255]], PharmGKB [254] and two commercial databases, WOMBAT (version
2009) and WOMBAT-PK (version 2008) [241]. Active compounds from the PubChem bioas-
say (2010) have been collected as well [246]. We considered only active compounds from ‘con-
firmatory’ assays in order to capture high confidence chemical-protein annotations from Pub-
Chem. Drug-target information was collected from DrugBank and PharmGKB. In addition,
we integrated chemical-protein associations from CTD (version 2009) [181] and STITCH
(version STITCH 2.0) [257]. These last two databases consider the effect or modulation (posi-
tive or negative) of a chemical on proteins, other than that defined as binding activity. Examples
include gene expression or pathway data, where the deregulation of a gene by a chemical may be
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not due to a physical interaction between the two entities but a response at a cellular level. Du-
plicate chemicals were found by using InChl keys and were merged into a single ChemProt ID.

Overall, the final database contains 700,000 distinct molecules annotated for 30,578 proteins.

Descriptors and similarity measurement

The chemical structure of the molecules was encoded using two rather different types of finger-
prints. The 166 MACCS keys, encode the presence or absence of predefined substructural or
functional groups [258]. On the other hand, a more complex 3-point pharmacophore finger-
print (GpiDAPH3) is based on an expansion of the PATTY pharmacophore feature recognition
scheme of a 2D structure [259]. This scheme assigns one or more pharmacophore feature types
to all atoms in a molecule using a predefined list of SMART queries. The list of pharmacophore
feature types comprises: hydrogen-bond donor (D), hydrogen-bond acceptor (A), polar (P) and
hydrophobic (H). In addition, an extra label (p or pi) is added to each feature if the originating
atom or group is sp>-hybridized or planar for other reasons. The GpiDAPH3 pharmacophore
feature scheme is expressed in 2D as triplet feature combinations with a graph based inter-atom
distance binning scheme. Both fingerprints are implemented in the Molecular Operating En-
vironment (MOE - version 2008.10) [260]. The similarity between two molecules is measured
using the Tanimoto coeflicient (T«¢), a method of choice for the computation of fingerprint-
based similarity [261]. The Tanimoto coefficient is defined as the number of bits in common
divided by the total number of used bits in both molecules. For any pair of chemicals, Tc
assumes values between o and 1. A high Tanimoto coefficient represents high similarity.

Protein-protein interaction network (PPI)

The human interactome used is an in-house protein-protein interaction network inferred from
experiments in both humans and model organisms [l47]. Using an elaborate scoring scheme,
all interactions have been validated against a gold standard [4§]. The current interactome
contains 428,429 unique protein-proteins interactions derived from source databases such as
BIND [pd], GRID [o1]], MINT [262], dip_full [263], HPRD [264], intact [265]], mppi [266],
MPact [267], Reactome [268] and KEGG [98]. Data are transferred between organisms by us-
ing the Inparanoid orthology database [L6d]. In total the human interactome comprises 22,997
genes.

Human disease genes and complexes. Based on a previous study [65], disease-associated
protein complexes was associated to the chemical-protein annotation By mining OMIM [63]]
and GeneCards [£13], two data resources for genes association to diseases, we collected a list of
2,227 unique disease-related proteins and mapped the complexes of genes to disease. Similarly,
complexes of genes were mapped to Gene Ontology (GO) terms [269] and tissues by using
the expression data from 73 non-disease tissues from the Novartis Research Foundation Gene
Expression Database (GNF) [115] and Human Protein Adas [27d]. Users of ChemProt can
thus retrieve gene complexes that are related to a query chemical and visualize the annotations

of each complex.
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Applications
Query submission

There are several query options for the user to access the data in the ChemProt database. We
have integrated a list of common names of chemicals that can be used as queries. A list of
chemicals can also be retrieved by protein name using the ‘search by Target’ field. Another
option is to perform a search by entering a chemical structure. The user can type a SMILES
string or draw the structure in the JME Molecular Editor applet that is part of ChemProt's
web interface. A search by chemical structure will provide an extended list of similar chemicals
that are stored in the database. The user can choose the metric to be used for similarity search:
MACCS for searching by substructure or functional group or Gpi-DAPH 3 for pharmacophore-
based searches. All source databases of ChemProt (or a combination thereof) can be searched
separately. The number of queries to WOMBAT and WOMBAT-PK has been restricted to 3
per user per day, since both databases are commercial.

Annotation and prediction of small molecule bioactivity

A query will return several types of information. The query itself can be depicted by dragging
the mouse to the position ‘Results for this compound’, where a 2D structure of the query is
shown. The results are displayed in tabular format when multiple chemical-protein pairs are re-
trieved. The table is divided into two main categories; Annotated Compound’, which includes
information related to the query, and ‘Similar Compound(s)’, which contains chemicals that
bear similarity to the input structure according to the chosen metric and cut-off. In each cate-
gory, the results are grouped by species, including ‘Human’, ‘Rat’, ‘Mouse’, ‘Bovine’, ‘Pig’ and
‘other species’.

Moving the mouse pointer to the ‘compound ID’, the 2D structure of the molecule is shown
together with some computed physico-chemical properties such as Molecular Weight, LogP,
number of hydrogen bond donors, number of hydrogen bond acceptors, number of rigid bonds
and number of rings. Thanks to the Marvin java applet from Chemaxon for the depiction of
the molecule [271]].

The “Type’ column presents information on bioactivity, which can either be a biological end-
point measurement (e.g., ICs0, Ki), or a score between 1 and 1000, as defined by the STITCH
system (the closer to 1000, the higher is the confidence of a true chemical-protein association).
CTD, DrugBank, PharmGKB and PubChem do not have explicit bioactivity values, so this
field is left blank for these databases. The “Type’ field is directly linked to the “Value’ field, which
contains the numeric value for the specified bioactivity, and the ‘Pharmacological effect’ that
describes the relation (substrate, inhibitor, agonist, antagonist) between the chemical and the
protein.

The “Target name’ is the common name of the targeted protein. It is linked to the ‘UniProt
ID’ field and ‘Ensembl ID’ where the user can get more information on the sequence and
function of the protein. The “TC’ field contains the Tanimoto Coefficient, which is a value that
assesses the chemical structure similarity of the query with other chemicals in ChemProt. The
TC value can vary between o and 1. As previously reported (50), a TC of at least 0.85 can be

used as a reasonable cut-off to indicate that two chemicals may share similar bioactivity. We
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implement the same threshold of 0.85, when MACCS fingerprints are used as similarity met-
ric, and compounds exceeding this threshold are listed under the field ‘Similar Compounds’.
A threshold of 0.60 is used as default with GpiDAPH3 fingerprints, since the set of similar
compounds captured using the threshold of 0.85 was too restrictive.

Finally, if a protein that is found to be deregulated by a chemical has been identified to be
involved in protein-protein interaction networks in human, this protein is linked to the ‘Disease
complexes’ server, where diverse biological and disease information is provided, as explained in
the next section.

SUBMISSION
Type a compound name: Paste or import molecule in SM format:
3 Choose fingerprint OMAcC (QPH4 | CN(C)CCCC3(c1cec(F)ce1)0Cc2ec(CHN)ccc23
w
3 Search by Target
R—
Clear fields :
When done . _import
2) | Annotated Compound
Human
=
E ‘g Compound|Type |Value |Target Name Species Pharmacol. | UniProt | Ensembl TC |Database |Diseases
8 o ID effect ID ID complexes
E :: 114367 Score|421 | dopamine receptor D4 Homo sapiens | NULL ENSG00000069696 | 1 | Stitch D
< 6 114367 Score|408 | Cytochrome P450, family 2 | Homo sapiens | NULL ENSP00000346625 | 1 | Stitch NA
% § subfamily D, polypeptide 7
% < 114367 NA  [NA NA Homo sapiens | NA ENSG0000100197 |1 CTD Diseases
o
"3 Complex 145 from DRD4 (ENSG00000069696)
Size 4
w 24 BioAlma Terms 33
x5
=
g )
20 BioAlma
oz
oz
z<
E % GO biological process GO cellular component
o<
£
: a _ MRNA expression

Figure 4.6: Chemical-protein annotation and disease associations retrieved from ChemProt for the compound
citalopram. 1) The compound can be queried using different formats (name, SMILES, and structure). 2) A query
results in a table showing protein annotations and bioactivity predictions for the compound. 3) Finally, a protein-
protein interaction network (protein-complex) for a target protein can be depicted and disease associations (OMIM
and BioAlma) and other biological components (GO terms, HPA and mRNA expression) are displayed.

From chemical-protein interactions to complex protein-disease associations

The unique feature of ChemProt is that it offers the user the possibility to get information at
a cellular level, by linking chemically-induced biological perturbations to specific tissues and
phenotypes.

Proteins that are both affected by a chemical and participate in one or more protein com-
plexes are highlighted in the results table of the ChemProt server. By clicking on the protein,
the user is redirected to the ‘Disease complexes’ server and has to choose which complex to
visualize. On the ‘Disease complexes’ server, size and illustrations of the protein network are

93



4. FROM CHEMICALS TO DISEASE

94

provided. Additionally, enrichment analysis results of the proteins in the complex are shown,
with respect to disease association (OMIM, BioAlma), Gene Ontology (GO) terms (biological
process, cellular component) and tissue specificity (Human Protein Atlas, GNF). The table pre-
senting the OMIM enrichment results is interactively linked with an illustration of the protein
complex where proteins associated with the selected disease are colored yellow.

To get further information on chemicals and genes, we recommend the free service ‘Reflect’,
developed by Pafilis et al. [272]]. Reflect tags gene, protein and small molecule names in text
and offers the opportunity to quickly view additional information on the ChemProt results,
including synonyms, protein sequences, domains, three-dimensional structures and subcellular
location.

Examples

With the integration of several databases, ChemProt not only provides pharmacological in-
formation, but also includes biological data associated to environmental chemicals and nat-
ural products. As seen in the examples below, ChemProt can be queried for drugs as well as

environmental chemicals. A search for citalopram, an antidepressant, illustrates the comple-

mentarity of the integrated databases within ChemProt (Figure .6 on the preceding pagd).

Marketed as a selective serotonin reuptake inhibitor (SSRI) (DrugBank), this drug displays
bioactivity on seven human proteins (ChEMBL). Via ChemProt, four other proteins (DRD3,
sHT1B, sHT3, ADRA2A) are retrieved from the Ki database. Additional information on drug-
target associations is provided by STITCH and CTD. From the first annotation to the D4
dopamine receptor (DRDgy), the disease term (under Disease Complexes) is highlighted, indi-
cating that protein-protein interaction information for this protein is available. Using the link
to the Disease Complexes server, one finds that DRD4 interacts with 3 proteins (SRC, GRB2
and NCKir). According to OMIM, this protein network is associated to osteogenesis imper-
fecta and leukemia and, according to BioAlma, to several psychotic disorders. Gene Ontology
(GO) enrichment indicates significant association of the protein complex to signal complex
formation and vesicle membrane. Furthermore, tissue annotation suggests that this complex is
mainly expressed in follicle and non-follicle cells (HPA) and dentritic cells (GNF). Although
it might be surprising to see a connection between antidepressant and leukemia, it has been
shown recently that antidepressants such as chlomipramine and fluoxetine reduce the growth
of B-cell malignancies in leukemia [273].

The second query, ‘bisphenol A* (BPA), is an environmental pollutant used as plasti-
cizer [274]. BPA has biological activity on the estrogen receptor alpha (ESR1), the androgen re-
ceptor (AR) and the estrogen related receptor gamma (ERR3). However, several other proteins
are retrieved from CTD and STITCH based on association data with this chemical. Looking
at ESR1 in the Disease Complexes server, a complex of 17 proteins is depicted (complex 265)
with significant associations to Li-FRAUMENI syndrome, breast cancer and neoplasms. En-
richment analysis indicates that the complex is found in the nucleus (GO Cellular component),
involved in the regulation of metabolic processes and transcriptionally regulated by the RNA
polymerase II promoter (GO Biological process). Furthermore, data from immunohistochem-
istry studies suggest that the complex is mainly located in the endometrium and the cerebral
cortex (HPA). The Disease Chemical Biology network for BPA indicates that, under certain

conditions, this chemical may be associated with certain types of cancers.
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We have illustrated that ChemProt integrates molecular, cellular and phenotypic data associ-
ated to small molecules, which can lead to novel links and suggest new avenues for research. We
envisage that the ChemProt server will find applications within a variety of chemogenomics,
polypharmacology and systems chemical biology studies. ChemProt will be updated once a

year with new compounds, new interactions and more sophisticated descriptors.
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Chapter

Epilogue

Looking back and examining all my work conducted as part of this PhD, I can't help but
experiencing a feeling of achievement. Data integration in biology is far from being a trivial
task. Putting together the different pieces of the puzzle that is human life is a painstaking
endeavor that can only be achieved by interconnecting the different fields of science.

The work presented here focused on the systems biology, and is the result of close collaboration
between several researchers. The holistic approach to disease systems biology enabled us to
perform analyses that would be otherwise impossible.

The main goal for the thesis was to close the gap between genotype and phenotype. Taking
disease descriptions and symptoms from medical databases, we combined the existing knowl-
edge on the molecular level, to enhance our understanding of the disease etiology.

The methods used for extracting phenotypic descriptions from medical text, presented in
Chapter P, are generally applied to any EHR system. Future work could be the extension of the
dictionary used for the extraction, by including terms from more terminologies (e.g., Snomed-
CT). The patient stratification procedure shown in Paper I could be integrated with the patients'
genetic material, in order to further distinguish patterns in the data.

The disease gene discovery procedures, pictured in Chapter [§, have been successfully used
to discover novel proteins related to a disease. By combining different data types we achieve
tissue and time resolution for elucidating the hidden causes of diseases. These approaches are
extremely flexible and have been used in most of the analyses in this thesis.

Finally, Chapter [, discusses approaches for discovering external causes of diseases, by com-
bining small molecule information with genetic data.

Opverall, the different Chapters of this thesis combine and make use of the available data in
biology, achieving a much greater level of resolution than if focusing on them individually. With
this I describe a generic framework for exploring the systems biology driving human disease,
and paves way for discovering disease causality.
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Supplementary Information to
Paper 1

Supplementary Text

Dictionary generation

The dictionary is based on the Danish translation of the WHO International Classification
of Diseases (ICD10), downloaded from the Danish national board of health 2.Nov 2009.
ICD1o is divided into 22 chapters, and has a hierarchical structure with increased speci-

fication of terms in each lower level. Each term is uniquely matched to code of between 3

and s characters.
The core of the dictionary consists of all ICD10 terms in their original form in UTF8
format and uppercased. This is a total of 22261 unique terms matched 1:1 with an ICD10

code. In addition to this, a number of permutations of the core terms are created, with

each created term variant pointing to the same ICD10 code as the term it was derived

from. These permutations are:

I.

Comma permutation. Many terms contain a comma, and in a number of these the
term structure is such, that the term maintains its clinical meaning by swapping the
rightand left side of the comma, or by keeping only what is on the left side. Example:
Ao6o AMOBEDYSENTERI, AKUT -> Ao6o AKUT AMO@BEDYSENTERI and
Ao6o AMOBEDYSENTERI

Abbreviations. Terms containing a number of standard abbreviations are added
in a version where the abbreviated word is written in full. Example: Bo2g HER-
PES ZOSTER U KOMPLIKATION-> Bo29 HERPES ZOSTER UDEN KOM-
PLIKATION

. Parenthesis. Some terms contain a parenthesis, which typically contain some

further specification of the term. A variant with the parenthesis deleted is
added to the dictionary. Example: Aoo KOLERA FORARSAGET AF VIBRIO
CHOLERAE (KLASSISK KOLERA) -> Aoo KOLERA FORARSAGET AF VIB-
RIO CHOLERAE

Typical expressions. Seven typical expressions used as specifiers, indicators of
causative agent or to express lack of were identified in many terms. Again for our
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purposes this is typically not relevant, so a variant of these terms, with the expres-
sion and whatever follows, removed, is added to the dictionary. Example: Bosg

MASLINGER UDEN SPECIFIKATION -> Bosg MASLINGER

5. ICD1o0 codes as terms. The ICD10 codes themselves are added as terms for their
own code.

Finally all special characters are removed from the terms. Variants are created in an iter-
ative way, in the order indicated above, such that type 3 permutation are also performed
on the variations already created by type 1 and type 2 permutations. Some of the permuta-
tions result in addition of nonsense terms to the dictionary, but the very fact that they are
nonsense terms makes them harmless. A more serious problem is created variants that are
sensible terms, but that have lost the actual clinical meaning of the original term. Exam-
ple: Forg DEMENS, VASKULZAR UDEN SPECIFIKATION -> Forg VASKULAR
UDEN SPECIFIKATION DEMENS -> Forg VASKULZR. The first permutation is a
comma permutation that leads to a nonsense term, which in the next permutation pro-
duces a term with single word vaskuler (vascular) pointing to Fo19. This is a simple word
with no diagnostic or symptomatic meaning by itself, and can definitely not be said to be a
synonym of Forg. This type of variant is typically very short, so all dictionary terms of one
and two words have been manually curated for this type of terms. They are not actually
deleted from the dictionary but are added to a blacklist

The objective of dictionary construction is to get as many terms (sensible) as possible
for each ICD10 codes. Essentially they are synonyms of the original term. So the goal is
to change the 1:1 relationship of ICD10 code to Term into a 1:many relationship. The
permutation procedure inevitably results in many situations where identical terms are cre-
ated, that point to different ICD10 codes. In order to fix this, the complete dictionary is
processed back into a 1:many structure by enforcing the following rules when two or more
instances of the same term point to different ICD10 codes:

1. If the term is an original part of ICD1o0, then only the version pointing to the
original ICD10 code is kept in the dictionary. Example:

DA37 KIGHOSTE

DA370 KIGHOSTE FORARSAGET AF BORDETELLA PERTUSSIS -> DA370
KIGHOSTE

Two codes with the same term, but since DA37 KIGHOSTE is an original, DA370
KIGHOSTE is deleted

1. If the identical terms are all variations resulting from permutations, then it is
checked if the ICD10 codes become identical at a higher level in the hierarchy,
going to a maximum of level 3. If this is the case, one copy of the term is kept, and
set to point to this ICD10 code. These contributions to the dictionary are counted
as mixed types. If no common ICD1o stem is found, all the variations are removed.
Example:



Az9s  HJERTESYGDOM FORARSAGET AF MENINGOKOKKER -> A39s
HJERTESYGDOM

518 HJERTESYGDOM ANDRE DARLIGT DEFINEREDE -> I5i8
HJERTESYGDOM

Ist9  HJERTESYGDOM UDEN SPECIFIKATION -> Is19 HJERTESYGDOM

Permutations create 3 (actually more) identical terms HJERTESYGDOM pointing to
3 different codes. Ignoring the first term, the last two share a 3 characters stem As1 that
would have resulted in Is1 HJERTESYGDOM to be added to the dictionary. However
since this stem is not shared with the top candidate A395, which points too a whole dif-
ferent chapter, the term HJERTESYGDOM is not added to the dictionary at all.

1. (Actually the original ICD1o0 classification does in fact contain a few cases of the
same term pointing to two different codes. In these instances, only the term pointing
to the lowest level in the classification is kept.)

As a final addition to the dictionary, a number of terms have been added manually.
These are obvious variants of frequent diseases missing from the dictionary that have been
discovered during the process of working with the data, or variations with clinical sense
that point to a wrong ICD10 code. This accounts for approximately so dictionary entries.
The final dictionary consists of §3452 terms.

Extracting ICD10 codes from patient records

The corpus was parsed in units of the individual text entry. Hits consist in a 1:1 match
between candidate strings in the corpus and the complete dictionary. After tokenizing the
text, a stepping algorithm is used to move through the tokens, creating candidate strings
from each token, by joining up to the 10 following tokens.

Candidates that match a dictionary term, and do not match any blacklist term, are
then checked for negations or family mention in the preceding tokens of the cur-
rent sentence. We consider the negations ‘aldrig’, ‘ingen', ‘intet' , ‘uden' (*Never',
*None','No','Without') and disregard candidates with any of these within the preceding
sentence. We similarly look for any mention of family members and relatives in the pre-
ceding sentence. Words like “kone', son, kereste, (*Wife', *Son', *Girlfriend") will also
disqualify a candidate term, since very often the hit will pertain to the family member and
not the patient.

Using this dictionary approach, we get hits covering a range of scenarios ranging
from very specific phenotypes like ' PARANOID SKIZOFRENI' and ‘SOCIAL FOBI'
(paranoid schizophrenia and social fobia), to more general ones such as 'HOVEDPINE'
(headache).

The majority of the hits fall in the general category. This category is generally character-
ized by terms consisting of only one word, typically describing a disease or symptom in its
most generic form. Since created term variants point to the same ICD10 code as the term
it is derived from, the permutation process will create some terms that point to an ICD10
code with an original meaning that is more specific than the variant term can support.
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That means a very specific code can be assigned to a hit with only a generic description of
disease or symptom.

To deal with this, while also creating a more homogenous data material, all mined codes
were converted to level 3 in the ICD1o0 classification. All subterms are treated as synonyms
for the upper term. In some cases a very specific code could have been mined from a correct
context, thus resulting in lost information, but in the more frequent case of a generic
context, it increases the precision of the mined term. Furthermore, level 3 also represents
a good general distinction of different diseases.

We text mined a total of 218963 hits, where a candidate in the corpus matched a dictio-
nary entry, and was not disqualified by the blacklist, negations or family mention. Nega-
tions and family mention disqualified around 10% of candidates.

The hits cover a total of 1229 different dictionary terms pointing to 1064 different
ICD1o0 codes. Rounding up to level 3 reduced the number ICD10 codes from 1064 to
677. Out of the 5543 patients in the Sct. Hans database, terms were mined for 3259
patients. The remaining patients either had no text entries, or the text entries were too few
and/or short to generate any hits.

In addition to the mined ICD10 codes, assigned codes were also extracted from struc-
tured fields in the EPR system. 31734 assigned codes were found for 2803 patients. Adding
assigned and mined data, we find ICD10 codes for a total of 3290 patients. Of these, 66
patients have contributions only from assigned codes, 487 have contributions only from
mining, and the remaining 2737 have contributions from both. Counting each code once
per patient and distinguishing between assigned and mined codes, we found the following
number of codes (Averages are all based on 3290 patients):

Number of ICDio Average retrieved

codes retrieved codes per patient
Assigned only: 4974 I.51
Mined only: 31662 9.62
Assigned-mined overlap 3798 I.15
Total 40434 12.28

Table 1: ICD10 code contribution from physician assignment and text mining.

The percentage of assigned codes that are also recovered by mining the text is 43%. For
each patient a vector is created with a unique list of all codes, assigned or mined, associated
with this patient. As seen from the table, mining adds almost 1o additional terms to the
2.6 terms coming from assigned codes.

Validation of textmining

The precision of our textmining was investigated by manually checking all 2724 mining
hits for 48 patients. The validation set covered 214 full level ICD10 codes, corresponding



to 151 level 3 codes. A hit was considered a correctly mined association when it was pos-
sible from the immediate record context to see directly (or deduce with good certainty) a
clinical link between the term and the patient. We defined precision in two ways: Incidence
precision of all curated hits, and association precision where an ICD10 code is considered
correctly associated with a patient if it has at least one correct incidence. In both cases we
also considered how precision was distributed among the different chapters. The low pre-
cision in chapter 1 (Infectious and parasitic diseases) is largely caused by a number of false
associations of the term ‘AIDS’, which mostly comes from somatic delusions. In chapter
19 (Injury, poisoning and certain other consequences of external causes) which includes
the term ‘bivirkninger’ (sideeffects), a standard expression stating that the patient has been
informed of possible sideeffects, cause many false associations, resulting in the low preci-
sion. We found the total incidence precision to be 87.78% and the association precision to
be 84.03%. The 333 false associations were further subdivided into subcategories with this
distribution: Negations: 105, Wrong individual: 17, Delusion:9, Putative: 40, Polysemi: 10,
Patient information: 92, Other:6o.

Negations cover negation constructs not caught by our negation detection. Eg. ‘Inves-
tigated for dyslexia, but nothing was found’. Wrong individual covers cases where the
association is really to another person. Eg. ‘An aquaintance of his recently died from a
heartattact’ Delusions cover cases where patients are delusional about a disorder. Eg. ‘ pt.
is paranoid about contacting AIDS’ Putative covers cases where the clinial link is vague,
speculative or avaiting confirmation. Eg. ‘pt should be examined by an ophthalmologist
on suspicion of glaucoma’. Polysemic covers cases where a term is used in a nonclinical
context. In the sample the ambiguity came from a geographical location that is also a clin-
ical term. Patient information covers information delivered to patient where the clinical
association is eg. a future issue. Eg. ‘pt. has been informed of the possible sideeffects of the
new drug’. Other covers any other false association.
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Supplementary Table 1 to Paper I

Table Sx: The final list of 802 candidate ICD1o pairs, out of the full list of possible pairs, resulting from
ranking based on p-values and filtering based on Co-occurence score followed by a False Discovery Rate
cutoff of 1% - corrected p-value.

ICDro A ICDro B #pt.5A  #pt.5B  #pt.5sAGB  Co-occurence score  p-value corrected p-value
Frr K77 350 293 140 2.13189778 1.10E-67 1.32E-63
Frr Frg 350 201 116 2.386034582 1.03E-66 1.06E-62
Fo6 Foy 222 183 92 2.800571645 2.67E-65 2.42E-61
F19 K77 441 293 149 1.897025061 5.58E-61 4.09E-57
Fi1 F19 350 441 163 1.775149744 2.59E-60 1.78E-56
Joo Ros 578 852 314 1.063838281 1.69E-59 1.06E-55
Foy R41 183 254 91 2.604387085 1.15E-57 6.49E-54
Foé6 R41 222 254 98 2.448316922 2.33E-56 1.20E-52
Bi8 K77 58 293 55 3.183172232 2.94E-56 1.48E-52
L2g Lso 618 398 203 1.429040079 6.78E-56 3.34E-52
Ros Rs3 852 564 299 1.02858564 7.67E-53  3.34E-49
J1o Rs3 756 564 278 1.095110225 8.84E-53 3.78E-49
Joo J1o0 578 756 280 1.070308495 3.52E-51 1.43E-47
F40 F41 394 610 190 1.366968428 6.52E-48 2.51E-44
Ros Ri2 852 517 271 1.011869091 1.10E-45 4.03E-42
Hss Ro7 453 493 176 1.361568121 9.91E-43 3.12E-39
Frr Fr3 350 291 114 1.847409805 1.36E-42 4.24E-39
Joo Rs3 578 564 220 1.142810304 7.53E-42 2.22E-38
Fir F12 350 665 176 1.302805581 3.50E-41 9.80E-38
Fi4 Frs 201 123 57 2.76804399 4.29E-39 1.16E-35
Fry4 F19 201 441 99 1.839464245 1.83E-37  4.67E-34
Biy K77 77 293 51 2.726379118 1.25E-36 3.08E-33
F12 Fig4 665 201 119 1.527420052 2.77E-36 6.68E-33
J42 Jas 129 297 65 2.383866043 5.17E-36 1.24E-32
Ri2 Rs3 S17 564 193 1.114026045 2.70E-34 6.00E-31
Jas Ros 297 852 164 1.082528759 1.11E-29 2.19E-26
F18 R41 76 254 43 2.679651402 1.82E-29 3.54E-26
F1o G62 1149 98 87 1.320882032 2.81E-29 5.39E-26
F12 F1s 665 123 81 1.664806678 3.28E-29 6.21E-26
B18 Fig 58 441 45 2.390250285 4.25E-29 7.96E-26
For Fo6 67 222 38 2.820479766 2.09E-28 3.80E-25
J42 Ros 129 852 92 1.434541737 3.12E-28 5.62E-25
F19 Zog 441 469 145 1.19284933 1.5sE-27  2.71E-24
Fi4 K77 201 293 70 1.909386388 9.68E-27 1.65E-23
Mt Mig 109 165 40 2.664552362 5.40E-26 8.81E-23
Ero E16 52 32 18 3.657421229 5.76E-26 9.33E-23
Kas Ri2 283 517 114 1.338601626 6.02E-26 9.68E-23
B18 Fi1 58 350 39 2.479912165 2.28E-25 3.49E-22
Ro7 R3o 493 115 64 1.83392552 4.94E-25  7.41E-22
Ero Erg 52 113 25 3.222235016 3.63E-24 s.12E-21
Ros Rso 852 131 88 1.349560915 4.73E-24 6.62E-21
Err Ei4 94 113 31 2.919829651 6.97E-24 9.58E-21
For Foy 67 183 32 2.803546253 1.23E-23 1.66E-20
F22 Zog 561 469 161 1.00049273 2.42E-23 3.14E-20
B34 Ros 83 852 64 1.530885061 6.22E-23 7.83E-20
L3o R46 398 624 153 1.009645201 1.21E-22 1.50E-19
Fo6 169 222 39 26 2.894277848 3.25E-22 3.95E-19
F20 G24 1414 105 92 1.011598621 4.72E-22 5.66E-19
K77 Ri2 293 S17 110 1.238512087 5.59E-22 6.60E-19
E66 Rs3 388 564 139 1.05216212 1.23E-21 1.42E-18
E66 Ri2 388 517 131 1.090862799 2.14E-21 2.44E-18
Joo Ls3o 578 398 143 1.021759852 2.68E-21 3.04E-18
F12 K77 665 293 126 1.07643233 7.59E-21 8.44E-18
L3o Ré6o 398 178 67 1.593486974 1.08E-19 1.13E-16
B34 Rs3 83 564 50 1.743716636 433E-19  4.42E-16
Fo1 R41 67 254 32 2.418505443 4.67E-19 4.74E-16
L2g Réo 618 178 84 1.303550872 4.85E-19  4.89E-16
L3o Ri2 398 517 128 1.0215692 9.26E-19 9.13E-16
Jas Rs3 297 564 111 1.109295235§ 1.02E-18 1.00E-15
J1o Rso 756 131 76 1.307845169 1.14E-18 1.11E-15
K77 Rs3 293 564 109 1.102482958 3.41E-18 3.25E-15
L2g Lso 618 65 44 1.768324411 3.47E-18 3.29E-15
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K77 R46 293 624 116 1.048347519 4.06E-18 3.83E-15
Brs K77 45 293 27 2.483235946 5.5sE-18  5.14E-15
164 169 56 39 15 3.265492149 7.25E-18 6.68E-15
Ros Ré6o 852 178 98 1.071822503 1.61E-17 1.43E-14
Mig Ms4 165 654 80 1.260924609 1.85E-17 1.62E-14
G93 R41 45 254 25 2.538821536 3.93E-17  3.38E-14
L2g R26 618 288 112 1.036238341 3.93E-17 3.38E-14
Ms3 Ms4 23 654 23 2.106757799 5.32B-17  4.49E-14
F22 K77 561 293 106 1.070134032 7.74E-17 6.43E-14
Ga4 R4 105 901 69 1.23420733 9.02E-17 7.39E-14
Fr13 Fé6o 291 635 114 1.008413355 9.45E-17 7.68E-14
N3o Ros 136 852 80 1.I61157154 1.06E-16 8.58E-14
F13 F41 291 610 111 1.027191638 1.07E-16 8.61E-14
Frs Fr19 123 441 53 1.626657291 1.11E-16 8.96E-14
Jas L2g 297 618 113 1.005348945 1.93E-16 1.52E-13
Biy F19 77 441 40 1.856587263 2.77E-16 2.17E-13
E66 Lo 388 398 101 1.089346005 4.28E-16 3.29E-13
B34 Joo 83 578 47 1.623175937 4.79E-16  3.67E-13
G43 G44 210 196 46 1.798564922 4.85E-16 3.70E-13
Ros R39 852 180 96 1.026599467 6.10E-16 4.62E-13
G24 Gy47 105 990 71 1.143313271 8.20E-16 6.12E-13
Fi3 K77 291 293 69 1.378901323 8.58E-16 6.38E-13
R26 Rs3 288 564 103 1.045905976 8.85E-16 6.54E-13
Fr3 Fi4 291 201 55 1.576351188 1.28E-15 9.43E-13
E66 Ré6o 388 178 6o 1.47182405 1.45E-15 1.06E-12
K77 Zog 293 469 92 1.120696103 1.90E-15 1.36E-12
169 R41 39 254 22 2.519620762 2.19E-15 1.55E-12
Mjyo Ms4 6o 654 40 1.665230639 2.29E-15 1.62E-12
N3o Rs3 136 564 62 1.373547619 2.55E-15 1.79E-12
N3o R3o 136 115 28 2.333466073 2.67E-15 1.87E-12
Biy Frr 77 350 35 1.969626351 2.79E-15 1.94E-12
Br7 Bi8 77 58 17 2.932699782 2.82E-15 1.96E-12
Frr Frs 350 123 45 1.707463401 s.11E-15 3.50E-12
G43 Ms4 210 654 89 1.074180099 9.59E-15 6.33E-12
For Zos 112 469 49 1.559285246 1.10E-14 7.23E-12
Foé6 164 222 56 24 2.387230924 1.51E-14 9.82E-12
L3o R23 398 81 37 1.815130526 2.52E-14 1.60E-11
Fro Hss 1149 80 61 1.09924269 2.54E-14 1.61E-11
Rs3 Ré6o 564 178 72 1.2118905 2.79E-14 1.76E-11
R33 R39 57 180 22 2.481428594 3.22E-14 2.02E-11
Bry Rs3 77 564 42 1.59844573 4.58E-14  2.83E-11
Kzs Rio 283 70 29 2.095157233 5.24E-14 3.22E-11
For 164 67 56 15 2.902102357 7.14E-14 4.36E-11
L3o Lgo 398 100 41 1.681123813 8.88E-14 5.38E-11
Ros Ri3 852 113 66 1.146595508 9.94E-14 5.92E-11
F32 F33 219 293 ss 1.449546252 1.01E-13 5.99E-11
Ri2 R26 S17 288 93 1.022984598 1.24E-13 7.29E-11
Biy R44 77 901 52 1.262779597 1.27E-13  7.43E-11
Fr3 F33 291 293 65 1.294012425 1.63E-13 9.51E-11
Ri2 Ré6o 517 178 67 1.230903921 1.75E-13 1.02E-10
For I61 67 128 20 2.541643224 1.79E-13 1.04E-10
L3o Ro6 398 368 92 1.030795667 2.00E-13 1.16E-10
R3o0 760 115 160 28 2.137110431 2.14E-13 1.23E-10
161 R41 128 254 37 1.80404682 2.32E-13 1.33E-10
J1o Ré6o 756 178 84 1.02043934 2.32E-13 1.33E-10
Mg1 Ms4 37 654 28 1.795338543 2.78E-13  1.58E-10
Ga4 Zo4 105 469 45 1.526442546 3.63E-13 2.05E-10
Kas Ro7 283 493 88 1.035877922 4.05E-13 2.28E-10
G43 Joo 210 578 79 1.078045145 6.27E-13 3.48E-10
F22 G24 561 105 49 1.403217075 7.17E-13 3.95E-10
M1y Mi1g 17 165 12 2.810901081 8.52E-13 4.68E-10
Fi4 Zo4 201 469 67 1.19734736 1.04E-12 5.70E-10
K77 Ré6o 293 178 47 1.510090646 1.17E-12 6.37E-10
J18 Ros 26 852 24 1.692803593 1.21E-12 6.57E-10
N3o R31 136 ss 18 2.537068753 1.59E-12 8.55E-10
N3o R32 136 79 21 2.36666484 1.86E-12 9.99E-10
Ms4 Ré6o 654 178 75 1.06271165 2.25E-12 1.20E-09
L2g R23 618 81 43 1.440156922 2.29E-12 1.21E-09
Bis R46 45 624 30 1.70097027 2.31E-12 1.22E-09
Dso E61 24 41 9 2.944428771 3.26E-12 1.71E-09
Fo6 161 222 128 33 1.81886645 3.62E-12 1.89E-09
For R26 112 288 35 1.736397268 3.87E-12 2.02E-09
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ICD10 A ICD1o B #pt.5sA  #pt.sB  #pt.5s ASB Co-occurence score  p-value corrected p-value
By Zoy 77 469 36 1.627307379 4.14E-12 2.15E-09
Fo7 Too 183 9 9 2.736381034 4.22E-12 2.17E-09
J4s Jo8 297 34 19 2.297147128 4.39E-12 2.25E-09
For 169 67 39 12 2.85707896 4.67E-12 2.39E-09
Ros R3o 852 115 64 1.078392351 5.04E-12 2.56E-09
B24 Zoy 120 469 47 1.406536031 5.59E-12 2.84E-09
Fo6 Ggo 222 337 57 1.288744048 6.39E-12 3.22E-09
L3o R26 398 288 75 1.084423887 6.57E-12 3.30E-09
Ro6 R26 368 288 71 1.11620622 8.84E-12 4.38E-09
Ex1g E16 113 32 13 2.737592172 9.30E-12 4.60E-09
Lso N3o 398 136 46 1.429245262 9.52E-12 4.69E-09
Fo7 F62 183 41 17 2.455988561 1.05E-11 5.17E-09
G24 R46 105 624 50 1.285966587 1.12E-11 5.46E-09
L2g N3o 618 136 59 1.17644059 1.26E-11 6.13E-09
Foy G40 183 337 50 1.36901099 1.28E-11 6.21E-09
F13 F19 291 441 80 1.017691709 1.52E-11 7.30E-09
G24 Rs3 105 564 47 1.337034987 1.72E-11 8.27E-09
Bis Fi9 45 441 25 1.886522108 1.93E-11 9.20E-09
B34 J1o 83 756 47 1.257825562 2.12E-11 1.01E-08
B24 R44 120 901 67 1.005815503 2.13E-11 1.01E-08
J1o N3o 756 136 66 1.054814346 2.23E-11 1.06E-08
R44 T73 901 113 64 1.024795358 2.64E-11 1.24E-08
Bogs L2g 62 618 35 1.509292896 2.72E-11 1.27E-08
Fog4 R4r 22 254 14 2.474743471 3.46E-11 1.61E-08
E11 151 94 282 30 1.775140297 4.88E-11 2.23E-08
Bi8 Fi4 58 201 20 2.208524443 4.91E-11 2.24E-08
Est F1o 26 1149 25 1.366981183 s.ssE-11 2.52E-08
Eig R73 113 52 15 2.521795298 6.65E-11 3.00E-08
Joo Rso 578 131 54 1.195520461 7.13E-11 3.21E-08
Ms4 Rso 654 131 58 1.125580882 7.99E-11 3.58E-08
J1o T73 756 113 57 1.104913642 8.11E-11 3.63E-08
Fis R46 123 624 54 1.176761986 8.44E-11 3.76E-08
Ros T73 852 113 61 1.034702628 9.26E-11 4.12E-08
Rso Rs3 131 564 53 1.202932107 9.54E-11 4.23E-08
B2y R46 120 624 53 1.184431953 9.69E-11 4.29E-08
Fso Zso 183 119 27 1.877725065 1.00E-10  4.43E-08
Bgo Ros 62 852 40 1.265350737 1.24E-10 5.46E-08
Joo Ja2 578 129 53 1.190312889 1.26E-10 5.54E-08
Est Hss 26 80 10 2752597114 1.58E-10 6.85E-08
J42 Rs3 129 564 52 1.197207579 1.71E-10 7.35E-08
Bis Bry 45 77 12 2.662571533 1.74E-10 7.47E-08
K76 K77 25 293 15 2.310055118 1.80E-10 7.70E-08
A46 Ré6o 49 178 17 2.301608111 1.95E-10 8.29E-08
B34 Rso 83 131 19 2.215960695 2.05E-10 8.67E-08
L2g L4o 618 100 46 1.248312427 2.43E-10 1.02E-07
G4 Joo 196 578 70 1.002682957 2.49E-10 1.04E-07
Fo6 F18 222 76 23 1.969483234 2.71E-10 1.13E-07
B34 Lso 83 398 32 1.579630527 3.76E-10 1.56E-07
Fog4 F18 22 76 9 2.729093944 4.52E-10 1.87E-07
L2g R3o 618 115 50 1.174058061 4.70E-10 1.93E-07
Ito I61 282 128 34 1.5477596 6.39E-10 2.60E-07
Fo7 169 183 39 15 2.335835356 6.65E-10 2.70E-07
Joo Trig 578 53 29 1.540743796 7.58E-10 3.08E-07
Rz R26 79 288 26 1.770206741 7.76E-10 3.14E-07
L89 Ros 36 852 27 1.43959299 8.04E-10 3.25E-07
Jo8 Ros 34 852 26 1.461389997 8.12E-10 3.27E-07
Biy B24 77 120 17 2.240698076 9.02E-10 3.62E-07
Joo R13 578 113 47 1.202829294 9.25E-10 3.70E-07
Erx R73 94 52 13 2.493694443 9.29E-10  3.71E-07
B34 Ms4 83 654 41 1.263109581 9.65E-10 3.85E-07
J1o Ri3 756 113 55 1.054287568 1.01E-09  4.01E-07
L2g Rso 618 131 54 1.102876765 1.02E-09 4.04E-07
By R46 77 624 38 1.321534615 1.03E-09 4.07E-07
B23 B24 12 120 8 2.646172402 1.09E-09 4.30E-07
Ros Rio 852 70 42 1.168676301 1.18E-09 4.60E-07
J42 Lso 129 398 41 1.338730673 1.25E-09 4.84E-07
Jas Rso 297 131 35 1.488944056 1.26E-09 4.88E-07
Fo7y Gor 183 16 10 2.541068586 1.33E-09 5.17E-07
Rs3 T73 564 113 46 1.206113602 1.42E-09 5.47E-07
Ms4 N3o 654 136 57 1.048841818 1.57E-09 6.04E-07
N3o R39 136 180 27 1.729987234 1.70E-09 6.53E-07
Erx E78 94 89 16 2.262549548 1.76E-09 6.73E-07



ICDr1o A ICD1o B #pt.5A  #pt.5B  #pt.s ASB Co-occurence score  p-value corrected p-value
Ga4 L2g 105 618 46 1.181399741 1.80E-09 6.85E-07
Biy K76 77 25 9 2.657348426 1.98E-09 7.50E-07
Fo7 F18 183 76 20 2.006236112 2.05E-09 7.74E-07
L3o Rso 398 131 41 1.31786196 2.10E-09 7.92E-07
R26 Ré6o 288 178 41 1.34079193 2.19E-09 8.23E-07
Frs K77 123 293 33 1.508028826 2.43E-09 9.09E-07
Rix Rs3 79 564 36 1.347214537 2.49E-09  9.26E-07
B24 Ri2 120 s17 45 1.211975805 2.63E-09  9.75E-07
L2g T73 618 113 48 1.140524343 2.78E-09 1.02E-06
Rso Ré6o 131 178 26 1.739186918 2.78E-09 1.02E-06
Bi18 Fi2 58 665 32 1.374981297 3.18E-09 1.16E-06
Biy B34 77 83 14 2.349822101 3.25E-09 1.18E-06
L3o R39 398 180 5o 1.16304138 3.32E-09 1.20E-06
L3o T73 398 113 37 1.373139515 3.37E-09  1.22E-06
B24 Faa 120 S61 47 1.161249473 3.53E-09 1.27E-06
R39 T73 180 113 24 1.79939605 3.63E-09 1.30E-06
Fo6 I1o 222 282 46 1.230601235§ 3.99E-09 1.43E-06
Kas N3o 283 136 34 1.462699077 4.02E-09 1.43E-06
B86 L2g 29 618 20 1.703596258 4.16E-09 1.48E-06
148 149 19 13 5 2.480523866 4.54E-09 1.61E-06
R46 Rso 624 131 53 1.063007187 4.72E-09 1.66E-06
L2t L3o 18 398 13 2.139459347 4.80E-09 1.69E-06
L89 R33 36 57 9 2.622635703 4.81E-09 1.69E-06
Jro Z2s 756 18 16 1.726769827 5.07E-09 1.78E-06
B24 K77 120 293 32 1.49757001 s.12E-09 1.79E-06
K77 Ri7 293 26 14 2.177663479 5.30E-09 1.85E-06
J42 L2g 129 618 52 1.07076004 5.44E-09 1.89E-06
Bogs R46 62 624 32 1.370920176 5.44E-09 1.89E-06
Rir Rso 79 131 17 2.118346619 5.56E-09 1.93E-06
Kas Rso 283 131 33 1.470588923 5.65E-09 1.95E-06
Jo8 Rs3 34 564 21 1.687847828 5.94E-09 2.04E-06
Ms4 T73 654 113 49 1.091564341 6.08E-09 2.08E-06
Brs Ry4 45 901 31 1.264076241 6.34E-09 2.16E-06
Fo7y Go3 183 45 15 2.191392738 6.78E-09 2.30E-06
Iso Ri18 19 29 6 2.583960542 6.80E-09 2.30E-06
Bry Rrz 77 517 33 1.375967935 8.09E-09  2.70E-06
Fo8 Zo4 72 469 30 1.460570777 8.46E-09 2.82E-06
Ga4 Ras 105 37 11 2.460071253 8.84E-09 2.93E-06
Fo8 Rs3 72 564 33 1.349467118 9.88E-09 3.26E-06
Biy Ré6o 77 178 19 1.952892335 1.07E-08 3.52E-06
J44 Jas 35 297 16 2.031026896 1.10E-08 3.59E-06
Fo3 R41 35 254 15 2.111645356 1.10E-08 3.60E-06
Joo T73 578 113 45 1.141428749 1.12E-08 3.64E-06
Frs Zog 123 469 42 1.214159071 1.14E-08 3.70E-06
Jas K77 297 293 56 1.054147783 r.15E-08  3.75E-06
Eé66 N3so 388 136 40 1.26679122 1.17E-08 3.80E-06
Mio Mi4 19 6 4 2.272784642 1.18E-08 3.83E-06
Fo6 Go3 222 45 16 2.074367184 1.21E-08 3.91E-06
A46 Bos 49 62 10 2.515769603 1.24E-08 3.99E-06
B18 Zo4 58 469 26 1.54261621 1.37E-08 4.37E-06
B24 Rs3 120 564 46 1.123539034 1.40E-08 4.46E-06
F84 Joo 92 578 39 1.220705148 1.42E-08 4.50E-06
Ito R41 282 254 49 1.134703293 1.44E-08 4.58E-06
Fo7 161 183 128 25 1.679003194 1.48E-08 4.67E-06
Biy Faa 77 561 34 1.30861518 1.65E-08 5.20E-06
Br7 Msg4 77 654 37 1.220562614 1.71E-08 5.36E-06
E16 R73 32 52 8 2.579418717 1.76E-08 5.47E-06
F62 R41 41 254 16 2.029025274 1.79E-08 5.55E-06
Hio L29g 47 618 26 1.457905764 1.90E-08 5.89E-06
B34 Ri2 83 s17 34 1.317518428 1.93E-08 5.97E-06
Fo8 Ri2 72 S17 31 1.377738958 2.05E-08 6.31E-06
Ro6 R39 368 180 46 1.I§3112751 2.06E-08 6.34E-06
J42 Ro6 129 368 37 1.300338091 2.13E-08 6.54E-06
Roé6 T73 368 113 34 1.359562717 2.20E-08 6.74E-06
R26 R33 288 57 20 1.80984195 2.24E-08 6.87E-06
Fo6 F62 222 41 15 2.08675044 2.26E-08 6.90E-06
B24 Rso 120 131 20 1.86171838 2.45E-08 7.48E-06
B34 Jas 83 297 25 1.614215552 2.51E-08 7.62E-06
Gy7 Jo8 990 34 26 1.265472627 2.73E-08 8.27E-06
Biy Rso 77 131 16 2.063867725 2.78E-08 8.39E-06
E88 G47 50 990 34 1.12517784 2.84E-08 8.57E-06
Ksog R46 31 624 20 1.609985344 2.86E-08 8.62E-06
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ICD10 A ICD1o B #pt.5sA  #pt.sB  #pt.5s ASB Co-occurence score  p-value corrected p-value
Es1 Go3 26 45 7 2.561043874 2.99E-08 8.98E-06
N3so Ré6o 136 178 25 1.637272516 3.01E-08 9.03E-06
Joo Mgo 578 60 29 1.378190086 3.21E-08 9.60E-06
Gor R41 16 254 10 2.298990026 3.35E-08 1.00E-05
Ag9 Ros 40 852 27 1.301633847 3.37E-08 1.00E-05
Agt R33 32 57 8 2.533560425 3.74E-08 1.11E-05
Joo N3o 578 136 50 1.03475661 3.82E-08 1.13E-05
Biy Rio 77 70 12 2.300832259 4.05E-08 1.19E-05
Ri2 R13 S17 113 41 1.162949239 4.23E-08 1.24E-05
L2o Lso 10 398 9 2.178060315 4.57E-08 1.34E-05
Ms4 Ro2 654 17 14 1.776179998 s.00E-08 1.45E-05
G24 K77 105 293 28 1.486273852 5.00E-08 1.45E-o05
Jas N3o 297 136 33 1.356583418 5.30E-08  1.53E-05
Fst Joo 85 578 36 1.215495501 5.37E-08 1.55E-05
Ri3 Rs3 113 564 43 1.110956369 s.soE-08 1.58E-05
Kas R26 283 288 52 1.04011776 5.83E-08 1.66E-05
Fi9 K76 441 25 15 1.878631819 5.87E-08 1.67E-05
Agq1 Ros 32 852 23 1.369760726 5.87E-08 1.67E-05
Bogs Lso 62 398 24 1.55634176 5.97E-08 1.70E-05
146 Rs3 121 564 45 1.08109233 5.98E-08 1.70E-05
Ri2 Rso 517 131 45 1.091557028 6.13E-08 1.74E-05
J40 Jas 15 297 10 2.224253964 6.21E-08 1.75E-05
G62 R27 98 47 11 2.321928095 6.67E-08 1.88E-05
B24 Lso 120 398 36 1.253701894 7.44E-08 2.08E-05
Fo8 Rt 72 79 12 2.252133206 7.58E-08 2.12E-05
I64 R41 56 254 18 1.835578386 7.72E-08 2.16E-05
Fo8 Roé6 72 368 25 1.521964812 7.92E-08 2.21E-05
Bogs Ré6o 62 178 16 1.964986483 8.46E-08 2.36E-o05
Bgo L2g 62 618 30 1.293564205 8.85E-08 2.45E-05
Fo8 Ry4 72 901 41 1.019509244 9.22E-08 2.55E-05
T73 Zog 113 469 38 1.188759951 9.44E-08 2.61E-05
L2g Too 618 12 11 1.882702432 9.52E-08 2.63E-05
Fo8 L2g 72 618 33 1.227034321 1.04E-07 2.85E-05
B18 R44 58 901 35 1.092349522 1.14E-07 3.11E-05
I2s Ro7 16 493 12 1.935937127 1.16E-07 3.17E-05
J1o Ré1 756 43 26 1.311168003 1.21E-07 3.29E-05
R26 Rso 288 131 31 1.35990234 1.25E-07 3.38E-05
Ro6 Ré6o 368 178 44 1.105729842 1.26E-07 3.38E-05
Est R41 26 254 12 2.111973403 1.26E-07 3.40E-05
Agr R26 32 288 14 1.980429662 1.26E-07 3.40E-05
F84 R46 92 624 39 1.116438604 1.29E-07 3.46E-05
B23 Rix 12 79 6 2.442058918 1.31E-07 3.50E-05
Brs Fa2 45 561 23 1.468389427 1.38E-07 3.69E-05
E66 Rso 388 131 37 1.207978479 1.40E-07 3.73E-05
F22 Fo8 561 72 31 1.269120577 1.48E-07 3.92E-05
L2g Mgo 618 60 29 1.289766498 1.51E-07 3.99E-05
J18 Jo8 26 34 6 2.464011906 1.52E-07 4.03E-05
Mrt Rso 109 131 18 1.831054925 1.54E-07 4.06E-05
146 R46 121 624 47 1.003036214 1.64E-07 4.31E-05
E78 Ito 89 282 24 1.534734467 1.84E-07 4.79E-05
Ro7 Z6o 493 160 49 1.001403912 1.96E-07 5.09E-05
Ggo 146 337 121 32 1.300854924 1.99E-07 5.16E-05
G44 Mgo 196 60 16 1.893858843 2.00E-07 5.18E-05
Bri7y L29g 77 618 34 1.178457259 2.04E-07 5.26E-o05
F19 Ré6o 441 178 49 1.008126494 2.09E-07 5.38E-05
B18 F13 58 291 19 1.706019561 2.14E-07 5.50E-o5
Joo Lgo0 578 100 39 1.107151344 2.16E-07 5.s3E-o5
As2 Foz 3 21 3 1.972635101 2.24E-07 5.72E-05
R26 R41 288 254 47 1.046756465 2.28E-07 5.82E-05
Kso Ké3 4 14 3 1.975650139 2.45E-07  6.23E-05
B23 Fi1 12 350 9 2.13504996 2.61E-07  6.59E-o05
F22 Rso 561 131 46 1.009998991 2.65E-07 6.69E-05
Frs F22 123 561 44 1.034156625 2.66E-07 6.72E-05
Biy J1o0 77 756 38 1.060928381 2.73E-07 6.88E-05
Fos R26 89 288 24 1.507848359 2.75E-07 6.91E-05
Moé Mig 21 165 9 2.284059909 2.83E-07  7.09E-o05
L2g R13 618 113 44 1.017667595 2.87E-07 7.17E-05
Tig Tes 53 30 7 2.431206436 2.87E-07 7.18E-05
I44 I4s 38 14 5 2.368722306 2.91E-07 7.27E-05
E66 T73 388 113 33 1.24685421 2.94E-07  7.33E-o05
Ag9 Rs3 40 564 21 1.485426827 2.99E-07  7.44E-05
Rrio Rs3 70 564 30 1.253756592 3.02E-07 7.51E-05



ICDr1o A ICD1o B #pt.5A  #pt.5B  #pt.s ASB Co-occurence score  p-value corrected p-value
Mir R26 109 288 27 1.409327315 3.21E-07 7.93E-05
G4 Ro6 196 368 46 1.035839448 3.35E-07 8.27E-05
Err Réo 94 178 19 1.716501492 3.38E-07 8.34E-05
Ré6o T73 178 113 21 1.628835984 3.52E-07 8.66E-05
Aq1 B37 32 17 5 2.364199748 3.58E-07  8.79E-o05
Ksx Ks2 12 5 3 1.973926488 3.69E-07 9.03E-05
Fo8 R26 72 288 21 1.590994628 3.76E-07 9.17E-05
B34 Zog 83 469 30 1.272531737 3.83E-07  9.33E-05
A49 B34 40 83 9 2.315365407 3.86E-07  9.39E-05
By Lo 77 398 26 1.388230465 4.12E-07 1.00E-04
R33 Rs3 57 564 26 1.325749806 4.32E-07 0.000104783
F1s Hss 123 453 38 1.120626698 4.49E-07 0.000108649
E66 E78 388 89 28 1.33491483 4.50E-07 0.000108788
B34 Ro6 83 368 26 1.392573242 4.53E-07 0.0001093 54
Fé6o Fé6r 635 40 22 1.399173477 4.62E-07 0.000111225§
L2g Tig 618 53 26 1.301287867 4.66E-07 0.000112062
La1 L4o0 18 100 7 2.370421928 4.70E-07 0.000112799
Ga4 Ri2 105 sI7 37 1.118644497 4.71E-07 0.000112869
K73 K77 6 293 6 2.189730596 4.76E-07 0.000113887
By Jas 77 297 22 1.532414054 5.06E-07 0.000120761
G43 Mgo 210 60 16 1.815503206 s.23E-07 0.000124377
B34 L2g 83 618 35 1.117606369 s.31E-07 0.000126046
For Fo8 112 72 13 2.020313764 5.38E-07 0.000127747
L3o Ri3 398 113 33 1.212674843 5.40E-07 0.000127965
J40 J42 15 129 7 2.332656547 6.00E-07 0.000141398
H26 H4o 38 16 5 2.340315994 6.24E-07 0.000146694
Err Irx 94 4 4 2.165808893 6.26E-07  0.000146932
B34 R46 83 624 35 1.104503547 6.77E-07  0.000158547
B18 B24 58 120 12 2.060975297 6.88E-07 0.000160767
Fé6s R46 30 624 18 1.505927857 7.08E-07 0.000164745
L3o Mit 398 109 32 1.217996317 7.10E-07 0.000165024
J18 Jas 26 297 12 1.957522692 7.16E-07 0.000165997
Fé6o Fgo 635 22 15 1.608727025 7.32E-07 0.000169464
Bis B18 45 58 8 2.327297631 7.38E-07 0.000170895
R23 Zos 81 469 29 1.257642063 7.60E-07 0.000175567
L3o Lso 398 (33 23 1.43713127 7.63E-07 0.000175964
Bogs Rs3 62 564 27 1.267752955§ 8.16E-07 0.000187453
B18 Frs 58 123 12 2.036690218 9.02E-07 0.000205245
Ros Rog 852 33 22 1.268681238 9.19E-07 0.000208804
161 164 128 56 12 2.031992232 9.32E-07 0.000211543
G24 L3o 105 398 31 1.223671974 9.32E-07 0.000211428
A46 E66 49 388 19 1.56091449 9.74E-07 0.000220524
N3o Ro6 136 368 35 1.150920761 9.76E-07 0.000220708
146 Lo 121 398 34 1.162327511 9.81E-07 0.000221631
E1o R73 52 52 8 2.304493502 9.89E-07 0.00022311
F84 Rs3 92 564 35 1.101991325 1.01E-06 0.000227331
Foz R41 21 254 10 2.069162025 1.04E-06 0.000234245
146 Ro2 121 17 7 2.299357907 1.10E-06 0.00024558
R23 Rs3 81 564 32 1.148537574 1.12E-06 0.000249909
Kso9 L29g 31 618 18 1.477500088 1.20E-06 0.000266455
Fo7 164 183 56 14 1.866035463 1.22E-06 0.000270409
For G40 112 337 29 1.266230289 1.25E-06 0.000274473
Ri2 T73 517 113 38 1.056034035 1.27E-06 0.000279652
B34 E66 83 388 26 1.323471823 1.29E-06 0.000284297
Ros R31 852 ss 31 1.069909788 1.30E-06 0.000285802
Jas T73 297 113 27 1.321810642 1.31E-06  0.000286645
Biy Ri7 77 26 7 2.314274522 1.34E-06 0.000294406
Fst Ms4 85 654 36 1.047835183 1.37E-06 0.000299049
Bos Zos 62 469 24 1.345447454 1.40E-06 0.000303978
Rs3 Tig 564 53 24 1.309614833 1.43E-06 0.000310913
E86 N3o 16 136 7 2.267602124 1.48E-06  0.000321351
Rz Zo4 79 469 28 1.241893637 1.50E-06 0.000324602
Fo8 Lo 72 398 24 1.364380378 1.52E-06 0.000329024
Kzs Rit 283 79 21 1.496801028 1.53E-06 0.000330306
Erx E66 94 388 28 1.262750159 1.57E-06 0.00033658
I6r Ro7 128 493 40 1.022658622 1.57E-06 0.000336969
146 Rog 121 33 9 2.175482834 1.67E-06 0.000357963
Gar Rs3 50 564 23 1.326228232 1.70E-06 0.000361717
J4s Rr1o 297 70 20 1.52064152 1.71E-06 0.000363332
Ros Ti4 852 53 30 1.073978247 1.72E-06 0.000365176
K76 Ri18 25 29 5 2.297650097 1.74E-06 0.000370256
Fo8 R46 72 624 31 1.126587677 1.74E-06 0.000370083
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Bogs Hio 62 47 8 2.254813899 1.77E-06 0.000374793
Iso Ros 19 852 15 1.43431394 1.87E-06 0.000394367
R26 Rss 288 20 10 1.99960141 1.90E-06 0.00039904
Err E16 94 32 8 2.233118828 1.97E-06 0.000412689
146 Zoy 121 469 37 1.058187055 2.05E-06 0.000428159
G43 Lés 210 38 12 1.924111692 2.07E-06 0.000431026
Riz2 R3o 517 115 38 1.032061209 2.08E-06 0.000433583
Fo7 For 183 112 20 1.938364232 2.09E-06 0.000433899
E78 I2s 89 16 6 2.288490747 2.13E-06 0.000442905
N3so R33 136 57 12 1.953597701 2.20E-06 0.000455737
Ms4 R33 654 57 27 1.183172232 2.22E-06 0.000459086
R3s T73 8 113 5 2.234723223 2.26E-06 0.00046606
Fa2r Fso 280 183 35 1.119034335§ 2.28E-06 0.000469816
R39 Ré6o 180 178 26 1.330153242 2.29E-06 0.000470577
Ag9 J1o 40 756 23 1.235669507 2.30E-06 0.000473015
N3o T73 136 113 17 1.666290142 2.37E-06 0.000486889
Rrio Rso 70 131 13 1.886210343 2.38E-06 0.000487437
Aq9 Joo 40 578 20 1.38739261 2.39E-06 0.000488255
B18 Fa2 58 561 25 1.255511696 2.39E-06 0.000488818
Ga4 R39 105 180 19 1.568177916 2.42E-06 0.000492227
J42 Kzs 129 283 28 1.261480803 2.42E-06 0.000491813
Bogs J1o 62 756 31 1.069564618 2.47E-06 0.000502333
146 Ro7 121 493 38 1.027515766 2.54E-06 0.00051461
Ksog Rro 31 70 7 2.269186633 2.55E-06 0.000517355
B18 Rs3 58 564 25 1.248522153 2.65E-06 0.000535469
Fo7 Ito 183 282 35 1.10938346 2.70E-06 0.000544093
Gy7 L7o 990 27 20 1.202552935§ 2.83E-06 0.00056716
Fso No1 183 6 5 2.169486559 2.90E-06 0.000580164
Go3 R26 45 288 15 1.695719771 2.91E-06 0.000582859
Bri7y Fs1 77 85 11 2.005125032 2.96E-06 0.000591988
A46 Ros 49 852 28 1.082997721 2.97E-06 0.000592406
Rio T73 70 113 12 1.933100475 2.98E-06 0.000595127
Kzs Mir 283 109 25 1.325262929 3.00E-06 0.000598541
G43 Mt 210 109 21 1.46712601 3.04E-06 0.000605295
Bgo Rs3 62 564 26 1.215285535 3.13E-06 0.000621783
F22 F23 561 66 27 1.192161904 3.22E-06 0.000638994
Rz Ri2 79 517 29 1.161192265 3.33E-06 0.00065874
Ag1 N3o 32 136 9 2.106065421 3.38E-06 0.000668375
J42 R6o 129 178 21 1.46316377 3.44E-06 0.000678
Ms4 R23 654 81 34 1.033230384 3.46E-06 0.00068092 5
Ro2 R26 17 288 9 2.006857012 3.46E-06 0.000681774
R23 R46 81 624 33 1.055104705 3.59E-06 0.000703613
J1o Mgo 756 60 30 1.067915994 3.61E-06 0.000706796
N3so R1o 136 70 13 1.846243935 3.65E-06 0.000713569
Ros R33 852 57 31 1.021704207 3.66E-06 0.000716208
E6r K2s 41 283 14 1.728415689 3.70E-06  0.000722415
F2s F31 145 172 22 1.422492316 3.70E-06 0.000722343
146 L89 121 36 9 2.105310479 3.72E-06 0.000725415
E16 Fo6 32 222 11 1.925371026 3.77E-06 0.000733211
F13 F32 291 219 40 1.009141334 3.82E-06 0.000743154
Ros R73 852 52 29 1.052270375 3.86E-06 0.000750391
Bis L2g 45 618 22 1.282806865 3.92E-06 0.000759224
L89 Ro7 36 493 17 1.493086931 3.99E-06 0.00077172
Ja4 Ros 35 852 22 1.192454434 4.03E-06 0.000778404
Fé62 164 41 56 7 2.23627201 4.05E-06 0.000782214
Far Zso 280 119 26 1.278809218 4.07E-06 0.000784375
Fr3 Ga4 291 196 37 1.0§1307077 4.10E-06 0.000789728
B24 Ré6o 120 178 20 1.486889265 4.12E-06 0.00079187
Agzr R39 32 180 10 1.99960141 4.22E-06 0.000810695
184 L29g 39 618 20 1.334722305 4.26E-06 0.000817056
G24 146 105 121 15 1.718538497 4.34E-06 0.000832085
Ksog Lso 31 398 14 1.658916924 4.36E-06 0.00083465
G43 Kas 210 283 38 1.032636148 4.37E-06 0.00083 5609
N3o Rso 136 131 18 1.566433817 4.50E-06 0.000859215§
Ko R41 15 254 8 2.060193561 4.53E-06 0.000862781
G43 Yo6 210 62 15 1.690402707 4.60E-06 0.000875356
L2g R31 618 55 25 1.198197347 4.60E-06 0.000874822
Frr Ré6o 350 178 39 1.004611709 4.89E-06 0.000930504
L89 R26 36 288 13 1.753768172 4.95E-06 0.000940301
Bis Ros 45 852 26 1.093423433 s.10E-06 0.000966273
Fo8 Ggo 72 337 21 1.393329338 s.15E-06  0.000973489
Kas K26 283 14 8 2.02963366 s.17E-06 0.000975968



ICDr1o A ICD1o B #pt.5A  #pt.5B  #pt.s ASB Co-occurence score  p-value corrected p-value
Mig Ré6o 165 178 24 1.332490888 5.18E-06 0.00097663
La2x Ro6 18 368 10 1.868051944 5.22E-06 0.000984391
Biy R26 77 288 20 1.439904542 5.35E-06 0.00I007551
E87 T73 40 113 9 2.07469313 5.41E-06 0.001016458
185 K74 3 5 2 1.578399813 5.54E-06 0.001040412
Hs3 R3o 453 115 34 1.055947204 5.63E-06  o0.001055585
Fo4 Fo6 22 222 9 2.008973435 5.67E-06 0.00106I555
I1o Roo 282 27 11 1.856264523 5.68E-06 0.001062633
J18 Jaa 26 35 5 2.232660757 5.68E-06 0.00106192
A46 L2g 49 618 23 1.233863504 5.69E-06 0.001062341
J1o T30 756 39 22 1.207169684 5.92E-06 0.001102927
F41 Fq2 610 37 19 1.347365309 5.93E-06 0.001103164
B34 F22 83 561 31 1.078479165 5.96E-06 0.001106819
Kas Ri3 283 113 25 1.278198536 6.02E-06 0.001116979
Kas T73 283 113 25 1.278198536 6.02E-06 0.001116067
F18 G93 76 45 8 2.141699819 6.05E-06 0.001120239
Bogs Ro6 62 368 20 1.404095489 6.10E-06 0.001127562
E78 Ro7 89 493 30 1.112577957 6.15E-06 0.001136108
Aq9 Lo 40 398 16 1.541764811 6.23E-06 0.001147802
Lés Ms4 38 654 20 1.29575205 6.31E-06 0.001159329
E66 Gar 388 50 18 1.462030394 6.61E-06 0.00121308
G4 Jas 196 297 37 1.023453676 6.72E-06  0.001230391
A46 Fig 49 441 19 1.401999782 6.99E-06 0.001278627
A49 Hss 40 453 17 1.467799695 7.17E-06  0.001309704
Er1 Ro7 94 493 31 1.084888898 7.20E-06 0.001313065
Fo6 R40 222 76 17 1.554445734 7.21E-06 0.001313621
184 Ry4 39 901 24 1.097820244 7.36E-06 0.001337977
B24 Fés 120 30 8 2.103508602 7.41E-06 0.001343649
R13 R39 113 180 19 1.477467955 7.53E-06 0.001364871
K73 K76 6 25 3 1.935679019 7.64E-06 0.001382003
L2g Rr1o 618 70 29 1.084268917 7.84E-06 0.001413822
E66 Z72 388 46 17 1.48624561 7.96E-06  0.001434246
R26 R32 288 79 20 1.407636662 8.18E-06 0.001468283
A36 B24 5 120 4 2.080245524 8.19E-06 0.001468547
I20 Ro7 10 493 8 1.848874192 8.22E-06 0.001472265
Bogs Ri2 62 517 24 1.218550355 8.26E-06 0.001475674
Jas Z2s 297 18 9 1.929652435 8.27E-06 0.001477318
Rio Ri2 70 S17 26 1.169925001 8.44E-06 0.001504
F42 J1o 37 756 21 1.211181029 8.51E-06 0.00151346
B2y F19 120 441 34 1.034615691 8.63E-06 0.001530I13
Gar Ré6o 50 178 12 1.810901081 8.66E-06 0.001534398
Mig R26 165 288 32 1.095441144 8.70E-06 0.00I541157
J1o Lso 756 3 31 1.005766943 8.73E-06 0.001543879
F41 Fys 610 26 15 1.458815097 9.11E-06 0.001603461
F1o Tso 1149 11 11 1.30946629 9.14E-06 0.001607582
Fs1 K77 85 293 21 1.360151765 9.64E-06 0.001689328
Joo R61 578 43 20 1.295649524 9.79E-06 0.00171365
R3o R39 115 180 19 1.455654426 9.83E-06 0.001718835
I39 K77 11 293 7 2.014765357 1.00E-05  0.001747795
N3o R26 136 288 28 1.16810407 1.02E-05 0.001774478
Mi1 M1y 109 17 6 2.162832352 1.06E-05 0.001841654
L2g Lss 618 11 9 1.705447403 1.06E-05 0.001840459
Ja2 R26 129 288 27 1.187660066 1.07E-05 0.00185771
Ag1 R31 32 (3 6 2.189159118 1.07E-05 0.001856318
L3o R18 398 29 13 1.634801262 1.07E-05 0.001856656
I1o 169 282 39 13 1.688710426 1.08E-05 0.001871903
A46 L89 49 36 6 2.188016842 1.11E-05 0.00190952
Ros T30 852 39 23 1.112514235 1.13E-05 0.001950425
I6r Réo 128 178 20 1.405864989 1.14E-05 0.001961775
Kzs Ré6o 283 178 33 1.059667736 1.17E-05 0.002004278
J1o R33 756 57 28 1.040575454 1.18E-05 0.002029546
Mjyo Ré6o 6o 178 13 1.72118239 1.21E-05 0.002073963
B18 Ms4 58 654 26 1.107632488 1.21E-05 0.002076523
G93 15¢¢) 45 282 14 1.626782676 1.22E-05 0.002092104
Fo8 G24 72 105 11 1.863426947 1.23E-o05 0.002097738
Agq1 Hgo 32 16 4 2.113257147 1.24E-05 0.002113087
R18 Ré6o 29 178 9 1.960722912 1.27E-05 0.002162592
Bgo R26 62 288 17 1.485699703 1.27E-05 0.002163779
E16 Ros 32 852 20 1.177115648 1.27E-05 0.002163432
Fog4 Foy 22 183 8 2.01695751 1.28E-05 0.002180435
Igs R61 42 43 6 2.176077228 1.29E-05 0.002181059
Fas Ro6 145 368 34 1.02336655 1.32E-05 0.00223676
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147 Ros 23 852 16 1.289156999 1.33E-05 0.002241216
Kz R33 283 57 16 1.526004842 1.33E-05 0.002244874
E87 Roo 40 27 5 2.175416805 1.36E-05 0.002300508
Bogs E66 62 388 20 1.337147092 1.38E-05 0.002320815§
A46 Jas 49 297 15 1.560801289 1.41E-05 0.002363517
E66 146 388 121 31 1.067380458 1.42E-05 0.002390224
Gyg7 Rog 990 33 22 1.073328424 1.43E-05 0.002394321
R3o R31 115 55 10 1.912232345 1.43E-05 0.002394895
Mt Mis 109 11 5 2.136655988 1.44E-05 0.002405253
L2g Rt 618 79 31 1.014543864 1.44E-05 0.002411
Hso J1o 16 756 12 1.474980994 1.44E-05 0.002410861
Bogs Feés 62 30 6 2.160870074 1.46E-05 0.002442425
Mit T73 109 113 14 1.660856838 1.47E-05 0.002449105
E88 Hss 50 453 19 1.342909104 1.47E-05 0.002457165
Kas R39 283 180 33 1.04453116 1.49E-05 0.002488287
Koz Zog 26 469 13 1.572736198 1.51E-05 0.002505422
J42 N3o 129 136 17 1.507144636 1.51E-05 0.002504887
167 169 5 39 3 1.916928928 1.52E-05 0.00251888
J42 Mig 129 165 19 1.420896167 1.52E-05 0.002528318
Lss3 Ros 13 852 11 1.458463569 1.53E-05 0.002536412
Gyg7 Kso9 990 31 21 1.090905255 1.55E-05 0.002558254
Fos 146 89 121 13 1.71202043 1.55E-05 0.002565852
Bis Rs3 45 564 20 1.26893 5007 1.56E-05 0.002567777
Ksog Ms4 31 654 17 1.329500032 1.56E-05 0.002568163
E66 Tso0 388 39 15 1.514729792 1.57E-05 0.002585875
E87 I21 40 5 3 1.914860548 1.64E-05 0.002686436
Ito R73 282 52 15 1.551854189 1.66E-05 0.002722758
For F18 67 76 9 1.972721157 1.68E-05 0.002747081
Agt F22 32 561 16 1.396702724 1.70E-05 0.0027649
G43 146 210 121 21 1.334540371 1.70E-05 0.002767937
Biy 146 77 121 12 1.762374199 1.71E-05 0.002787358
Ms4 Ras 654 37 19 1.259285642 1.72E-05 0.002798292
Es3 Ga4 16 196 7 2.034166603 1.73E-05 0.002808566
A69 E61 5 41 3 1.912795128 1.77E-05 0.00286201
E1o Foy 52 183 12 1.739779292 1.78E-05 0.00287644
E66 I61 388 128 32 1.035813943 1.78E-05 0.002878245
Bogs Kso9 62 31 6 2.143605422 1.79E-05 0.002886621
Hio Ro7 47 493 19 1.31422 1.80E-05 0.002898927
B34 Bgs 83 62 9 1.963456584 1.82E-05 0.002940506
A36 J20 5 5 2 1.574041214 1.84E-05 0.0029718
Ri2 R23 517 81 28 1.078871391 1.85E-05 0.002981024
K77 R18 293 29 11 1.743925416 1.86E-05 0.002993095
Ga4 N3o 105 136 15 1.583045298 1.87E-05 0.002995646
Ag9 R26 40 288 13 1.636942771 1.87E-05 0.002994161
E87 R26 40 288 13 1.636942771 1.87E-05 0.002992045
Biy Ro6 77 368 22 1.258610347 1.89E-05 0.00303323
K29 Ri2 38 S17 17 1.368470681 1.92E-05 0.003065263
Bgo Jas 62 297 17 1.448123538 1.92E-05 0.00307161
Ni13 R33 4 57 3 1.903332101 1.95E-05 0.003115819
Nyg7 R33 4 57 3 1.903332101 1.95E-05 0.003113625
F70 Hso 27 43 5 2.148920584 1.96E-05 0.003129867
E87 R18 40 29 5 2.149244749 1.97E-05 0.00314I915§
Mgo Rs3 6o 564 24 1.147430364 1.98E-05 0.003155696
Est F18 26 76 6 2.128734985 1.99E-05 0.003159039
Bgo Zog 62 469 22 1.22515322 2.01E-05 0.003192033
Bgo Lso 62 398 20 1.304802993 2.03E-05 0.003214972
B18 B22 58 4 3 1.901692675 2.06E-05 0.003257466
Fr3 Fér 291 40 13 1.625300246 2.09E-05 0.003307716
G81 169 15 39 4 2.085819368 2.10E-05 0.003316886
E66 R32 388 79 23 1.218050413 2.10E-05 0.003319267
E66 T71 388 16 9 1.792391923 2.16E-05 0.00340778
J1o L89 756 36 20 1.179383888 2.16E-05 0.003406633
Fso Trig 183 53 12 1.719308843 2.19E-05 0.003443955
L89 R31 36 55 6 2.127639544 2.19E-05 0.003442946
Hro Hss 47 453 18 1.346543394 2.19E-05  0.003442916
Gor Gog 16 2 2 1.570998011 2.22E-05 0.003483608
B23 K77 12 293 7 1.951280433 2.22E-05 0.003481993
Ri3 T73 113 113 14 1.619668026 2.24E-05 0.003503793
A49 K77 40 293 13 1.617590434 2.25E-05  0.00352414
J44 Jo8 35 34 5 2.139551352 2.26E-05  0.003534841
Roo R46 27 624 15 1.386239079 2.27E-05 0.003544515
Frg Fst 441 85 26 1.123362114 2.37E-05 0.003691778
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L3o Tig 398 53 18 1.358152195 2.41E-05 0.003744379
Ja4 L3o 35 398 14 1.518964942 2.41E-05  0.003745273
F32 Gq4 219 196 29 1.094720119 2.43E-05 0.003784524
Ms4 Rro 654 70 29 1.008208813 2.48E-05 0.003846435
Frg G24 441 105 30 1.040161119 2.49E-05 0.003858285
Bo6 B26 3 10 2 1.571866843 2.49E-05 0.003861888
J1o Kso 756 31 18 1.225843073 2.50E-o5 0.003871224
J1o Ti4 756 53 26 1.034748781 2.51E-05 0.003884528
Agq1 Joo 32 578 16 1.360220994 2.51E-05 0.003882889
Fo6 163 222 7 5 2.02685122 2.51E-05 0.003887754
L2s L3o 5 398 1 1.902512155§ 2.53E-05 0.003914913
G62 Hi8 98 3 3 1.876516947 2.56E-o5 0.003951978
L89 Ro2 36 17 4 2.075801901 2.60E-05 0.004001797
Be68 Lgo 7 100 4 2.043626932 2.62E-05 0.004037089
E66 I20 388 10 7 1.876114465 2.63E-05 0.004048884
Roé6 Rso 368 131 31 1.031643085 2.67E-o5 0.004102346
F2s R33 145 57 11 1.77260473 2.68E-05 0.004110139
Too Tig 12 53 4 2.066955506 2.70E-05 0.0041443
Fos3 146 35 121 8 1.976321004 2.71E-05 0.00415723
R26 R27 288 47 14 1.552357835 2.72E-05 0.004164579
J44 Ms4 35 654 18 1.255621905 2.81E-05 0.004291046
Ito Réo 282 178 32 1.021392294 2.86E-05 0.004360934
Fos 161 89 128 13 1.649465904 2.87E-05 0.004368489
Joo L73 578 6 6 1.768846156 2.88E-05 0.004380514
Hso Msy4 16 654 11 1.§21270739 2.91E-05 0.004427464
A46 For 49 112 9 1.906123409 2.92E-05 0.004433628
Féo Yoé6 635 62 26 1.058163026 2.97E-o5 0.004502221
R40 Too 76 9 4 2.049423806 3.04E-05 0.004598107
F33 G62 293 98 22 1.241469214 3.04E-05 0.004599238
Kso Zos 31 469 14 1.468824298 3.06E-05 0.004613407
E87 L3o 40 398 15 1.45430197 3.06E-05 0.004620099
F22 R23 561 81 29 1.018210257 3.06E-05 0.004617263
Fos R4r 89 254 19 1.345358313 3.07E-05 0.004628929
Bor Bos 8 4 2 1.570998011 3.10E-05 0.004658711
J1o Jo8 756 34 19 1.182333203 3.12E-05 0.004689699
Bgo Jo8 62 34 6 2.093017529 3.12E-05 0.00469108
Biy R31 77 I3 8 1.976321004 3.13E-05 0.004692086
F22 Fés 561 30 15 1.387529184 3.13E-05 0.004702303
E78 G43 89 210 17 1.429893104 3.14E-05 0.004709467
Kso Ros 31 852 19 1.147527505 3.15E-05 0.004712383
Aq9 F22 40 561 18 1.280635545 3.15E-05 0.004711729
Joo Rir 578 79 29 1.01168228 3.19E-05 0.004765451
L3o R32 398 79 23 1.184856501 3.20E-05 0.004773811
Igs R26 42 288 13 1.581896198 3.37E-05 0.005004299
Bos Noo 62 11 4 2.050150056 3.42E-05 0.005073378
Frs R23 123 81 12 1.690280237 3.44E-05 0.005096263
K76 Ri7 25 26 4 2.061820049 3.47E-05 0.005132695
Eé6r Ros 41 852 23 1.046718719 3.49E-05 0.005162128
Frg Tgo 441 7 6 1.852564625 3.49E-05 0.005162959
L3o L89 398 36 14 1.485999926 3.51E-o5 0.00518573
Bi18 My1 58 37 6 2.08289705 3.51E-05 0.005185503
R33 Réo 57 178 12 1.670495507 3.61E-05 0.005322238
B2o B23 3 12 2 1.569261916 3.65E-05 0.00537522
G44 N3o 196 136 21 1.273227798 3.69E-05 0.005422846
Fa21 Yo6 280 62 16 1.437480549 3.69E-05 0.005421409
Bogs Rio 62 70 8 1.956329528 3.78E-05 0.005548992
G62 R4r 98 254 20 1.293702912 3.79E-05 0.005557124
X60 X78 5 7 2 1.569695744 3.87E-05 0.00565485
Bi18 B23 58 12 4 2.045073969 3.88E-o05 0.005662543
Bi18 K72 58 12 4 2.045073969 3.88E-05 0.005658899
J1o Ro2 756 17 12 1.405779867 3.88E-05 0.005662826
K77 Rz 293 79 19 1.315529111 3.90E-05 0.00568281
Fi4 F16 201 8 5 2.010857311 3.90E-05 0.005685049
Ksé6 Rz 28 79 6 2.065486366 3.91E-05 0.005698202
Err R3s 94 8 4 2.024946357 4.01E-05 0.005821889
L70 Ms4 27 654 15 1.329346979 4.08E-05  0.005917267
E66 Ro2 388 17 9 1.734628772 4.12E-05 0.00595I591
Ggo Zso 337 119 27 1.08605208 4.12E-05 0.005953898
Moé6 Mir 21 109 6 2.045435955 4.17E-05 0.006017718
G24 Hs3s 105 453 30 1.003966174 4.22E-o05 0.006090264
126 180 3 13 2 1.567961214 4.32E-05 0.006210194
L3o Rrio 398 70 21 1.216358944 4.33E-05 0.006223417
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ICDr1o A ICD1o B #pt.5sA  #pt.sB  #pt.5s ASB Co-occurence score  p-value corrected p-value
J42 Ja4 129 35 8 1.923613953 4.33E-05 0.006225268
Eos Ga4 18 196 7 1.948738984 4.34E-o05 0.006237364
L3o Mgo 398 60 19 1.276073018 4.38E-05 0.006286067
R31 Rs3 5s 564 22 1.141092319 4.41E-05 0.006325676
B34 Ro2 83 17 5 2.070082404 4.42E-05 0.006326808
Fo1 146 112 121 14 1.550986615 4.42E-05 0.00633379
Fso Ooo 183 5 4 1.967909878 4.44E-o05 0.006349173
R23 R26 81 288 19 1.305685409 4.45E-05 0.006360884
Mgo Ms3 60 23 5 2.079627535 4.46E-05 0.006370616
Agr J1o 32 756 18 1.185600003 4.50E-05 0.006419999
Es6 G62 73 98 10 1.792916745 4.54E-05 0.006466484
N3so Ri13 136 113 15 1.496365141 4.56E-05 0.006501821
Kzs K29 283 38 12 1.606645306 4.57E-05 0.00651302
A46 R26 49 288 14 1.503796961 4.58E-05 0.006510849
Ex16 R26 32 288 11 1.658501567 4.63E-05 0.006586591
Gy43 J42 210 129 21 1.252469238 4.64E-05 0.006596563
Bogs Fo8 62 72 8 1.93307185 4.66E-05 0.006616328
Mss M7o 23 2 2 1.564930796 4.68E-05 0.006636803
Jas Rt 297 79 19 1.298386904 4.72E-o05 0.006687935
Gy7 Noo 990 11 10 1.351733575 4.72E-05 0.006691753
B34 G43 83 210 16 1.432598327 4.82E-05 0.006816008
Ios Riz 42 79 7 1.993873897 4.83E-05  0.006827435
E66 Ga4 388 105 27 1.065027567 4.83E-05 0.006831663
G44 K29 196 38 10 1.752865798 4.88E-05 0.006885998
Lés Myo 38 60 6 2.047765178 s.o1E-os 0.007057193
E78 Ga4 89 196 16 1.431623863 s.03E-os5 0.007090805
L3o Rzs 398 37 14 1.453771352 5.04E-05  0.007090627
Fo7 So6 183 33 9 1.818293236 s.osE-os 0.007105574
Bogs Lo7 62 12 4 2.027804595 5.06E-05 0.007107741
B23 Ros 12 852 10 1.421136347 5.06E-05 0.007105216
L3o Ro2 398 17 9 1.710031029 5.06E-05 0.007103564
F2s F3o 145 6 4 1.98343215 s.o7E-os 0.007108861
E66 R73 388 52 17 1.335512549 5.08E-o5 0.007118533
L2g L6s 618 38 18 1.223254311 s.19E-o5 0.00723728
I1o Irs 282 4 4 1.89662226 s.29E-o5 0.00736067
F1o K70 1149 15 13 1.166132189 5.32E-o5 0.007382742
A46 J1o 49 756 24 1.028019191 s.33E-o5 0.007396096
Fo7 R40 183 76 14 1.520809285 s.39E-o5 0.007451958
Igs R6o 42 178 10 1.749108777 s.41E-05 0.007472435
Ros Z30 852 14 11 1.375343222 5.46E-o5 0.007537128
Ks9 Rs3 31 564 15 1.341380458 5.48E-05  0.007546299
B24 Kas 120 283 24 1.142775253 5.s6E-os 0.007648345
J1o Ls3 756 13 10 1.464043328 5.60E-o5 0.007697899
G81 R41 15 254 7 1.890268559 5.66E-o5 0.007768942
F22 K29 561 38 17 1.266957082 5.75E-os 0.007884875
I6o I61 3 128 1.840735958 5.76E-o5 0.007889321
Ro2 Ri2 17 S17 10 1.583090086 s.77E-os 0.00790073 1
Nort 092 6 7 2 1.566661684 5.80E-o5 0.007936718
B18 K76 58 25 5 2.058163026 5.80E-o5 0.00793 5428
Eé61 R33 41 57 6 2.033076543 5.82E-05 0.00796091§
I61 K2s 128 283 25 1.11423531 5.87E-o5 0.008021346
B24 Tso 120 39 8 1.893432861 s.91E-o5 0.0080547
Brs Ro6 45 368 15 1.407020482 5.92E-o5 0.008069911
Koz Ris 26 2 2 1.562338351 6.01E-o05 0.008177556
L89 Rso 36 131 8 1.88693097 6.02E-05 0.008189892
Rz R13 79 113 11 1.692231929 6.08E-05 0.008256989
B34 Los 83 4 3 1.861301038 6.08E-05 0.008258728
Ros R2s 852 37 21 1.055923524 6.09E-05 0.00825492
F23 Zoy 66 469 22 1.143870214 6.10E-05 0.008262658
J18 L29g 26 618 14 1.350120179 6.11E-05 0.008267767
Hgo Ro2 16 17 3 1.885400068 6.16E-05 0.008336055
B22 K77 4 293 4 1.882325165 6.17E-05 0.008349531
Rz R6o 79 178 14 1.507948127 6.19E-o05 0.008371541
B86 L3o 29 398 12 1.527886058 6.27E-o05 0.008463544
Ggo Mgo 337 60 17 1.332809952 6.30E-05 0.008490023
E78 I69 89 39 7 1.960850937 6.36E-05 0.008570591
E87 Iso 40 19 4 2.022093771 6.37E-05 0.008580381
Riy R18 26 29 4 2.024232682 6.37E-o05 0.008575533
Ros Rig 852 25 16 1.185550595 6.41E-05 0.008617671
Rog R26 33 288 11 1.625654601 6.41E-05 0.008623607
F70 Jas 27 297 10 1.678119743 6.48E-05 0.008709995
Koz R33 26 57 5 2.048456042 6.51E-05 0.008741732



ICDr1o A ICD1o B #pt.5A  #pt.5B  #pt.s ASB Co-occurence score  p-value corrected p-value
Fst G43 85 210 16 1.403646954 6.53E-05 0.008769729
B23 F12 12 665 9 1.545600068 6.55E-05 0.008786024
Hio Ls3o 47 398 16 1.346381139 6.64E-05 0.008896511
Err T73 94 113 12 1.620269369 6.67E-05 0.00893651
Ja2 Mrr 129 109 14 1.508031272 6.69E-05 0.00894801
A46 Zo4 49 469 18 1.250615885 6.81E-05 0.00909684
Ri7 R46 26 624 14 1.338540551 6.83E-05 0.009113459
Rio Ré6o 70 178 13 1.548162583 6.89E-05 0.00918046
Rz R39 79 180 14 1.494871001 7.01E-05 0.009325566
Jas Mi1 297 109 23 1.146693921 7.09E-05 0.009424146
Ksé6 R26 28 288 10 1.672390461 7.13E-05 0.009468646
A46 Ri2 49 S17 19 1.200912694 7.13E-05 0.009468183
G24 R26 105 288 22 1.174268962 7.17E-05 0.009499916
Biy Rz 77 79 9 1.811504796 7.20E-05 0.009534535
Ri2 R33 517 57 21 1.14369979 7.24E-05  0.009584135
Ri2 Ti4 517 53 20 1.170661258 7.26E-o05 0.009602679
B22 B23 4 12 2 1.56406613 7.29E-05 0.009634522
Ré6o R73 178 52 11 1.653894522 7.37E-05 0.009730949
Mrs M1y 3 17 2 1.562770102 7.52E-05 0.009919199
Agq1 Biy 32 77 6 2.000877285 7.54E-05 0.009944004
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Supplementary Table 2 to Paper I

Table S2: ICD1o pairs curated by a medical doctor. The pairs were assigned one of three categories: 1. similar

diagnosis, 2. consequences or side effects, 3. surprising correlations.

ICD10 A Danish description A ICD1o B Danish description B Category
B34 Virussygdom Uden Specifikation Lokali-  Jro Influenza foraRsaget Af Anden Identifi- 1
sation ceret Type Infl.Virus
J42 Kronisk Bronkit Uden Specifikation Ro6 Abnorm VejrtreKning 1
F20 Skizofreni G24 Dystoni 2
G24 Dystoni R44 Sympt Og Abnorme Fund VedraeRende 2
Opfattelsesevne, Andre
Fa22 Paranoide Psykoser Gaq Dystoni 2
Fo6 Psykiske Lidelser Hjerneorganisk ~ Ggo Epilepsi 2
Betinget, Andre
Fo7 Personligheds- Og AdfzRdsforstyrrelser G40 Epilepsi 2
Hjerneorg Betinget
Jio Influenza fordRsaget Af Anden Identifi-  Ri3 SynkebesvaR 2
ceret Type Infl.Virus
B2g4 Hiv Sygdom Og Aids Uden Specifikation K77 Leverlidelse Ved Sygdom Klassificeret An- 2
detsteds
Ga7 SceVnforstyrrelser Jo8 iNdedrzTssygdom, Anden 2
B2g Hiv Sygdom Og Aids Uden Specifikation ~ L3o Dermatit, Andre Former 2
Jro Influenza fordRsaget Af Anden Identifi-  R61 ceGet Svedsekretion 2
ceret Type Infl.Virus
B1y LeverbetzNdelse, Anden Akut Viral J1o Influenza foraRsaget Af Anden Identifi- 2
ceret Type Infl.Virus
By LeverbeteNdelse, Anden Akut Viral L3o Dermatit, Andre Former 2
B34 Virussygdom Uden Specifikation Lokali- ~ Ro6 Abnorm VejrtreKning 2
sation
49 Bakteriel Infektion U Angivelse Af Lokali-  J10 Influenza foraRsaget Af Anden Identifi- 2
sation ceret Type Infl.Virus
Bos Strepto- Og Stafylokokker Som 4Rsag Til ~ J1o Influenza foraRsaget Af Anden Identifi- 2
Sygd I Andre Kap ceret Type Infl.Virus
Bos Strepto- Og Stafylokokker Som dRsag Til ~ Ro6 Abnorm VejrtreKning 2
Sygd I Andre Kap
E88 Stofskifteforstyrrelser, Andre Hss Synsforstyrrelser 2
Boo Tuberkulose, FeeLger Efter Jas Astma 2
E66 Fedme, OvervaeGt R32 Urininkontinens Uden Specifikation 2
F32 Depressiv Enkeltepisode Gy4 Hovedpine Syndromer, Andre 2
ag1 Anden Blodforgiftning J1o Influenza foraRsaget Af Anden Identifi- 2
ceret Type Infl.Virus
E66 Fedme, OverveGt R73 ForheeJet Blodsukker 2
a46 Rosen J1io Influenza fordRsaget Af Anden Identifi- 2
ceret Type Infl.Virus
J1io Influenza fordRsaget Af Anden Identifi-  Ls3 ErytematceSe Tilstande, Andre 2
ceret Type Infl.Virus
G24 Dystoni R26 GangbesvaR Og Mobilitetsforstyrrelser 2
Fa22 Paranoide Psykoser K77 Leverlidelse Ved Sygdom Klassificeret An- 3
detsteds
N3o BleRebeteNdelse Ros Hoste 3
E66 Fedme, OvervaeGt L3o Dermatit, Andre Former 3
G43 MigraNe Ms4 Rygsmerter 3
Bi7 LeverbeteNdelse, Anden Akut Viral R44 Sympt Og Abnorme Fund VedraeRende 3
Opfattelsesevne, Andre
L3o Dermatit, Andre Former Roé6 Abnorm VejrtreKning 3
Lso Dermatit, Andre Former R26 GangbesvaR Og Mobilitetsforstyrrelser 3
L30 Dermatit, Andre Former N3o BlezRebetzNdelse 3
B2y4 Hiv Sygdom Og Aids Uden Specifikation ~ R44 Sympt Og Abnorme Fund VedraeRende 3
Opfattelsesevne, Andre
J1io Influenza foraRsaget Af Anden Identifi-  N3o BlzeRebeteNdelse 3
ceret Type Infl.Virus
B34 Virussygdom Uden Specifikation Lokali- ~ Ms4 Rygsmerter 3
sation
J42 Kronisk Bronkit Uden Specifikation L3o Dermatit, Andre Former 3
Ms4 Rygsmerter N3o BlaeRebetzNdelse 3
B24 Hiv Sygdom Og Aids Uden Specifikation F22 Paranoide Psykoser 3
Fo6 Psykiske Lidelser Hjerneorganisk ~ Iro BlodtryksforhaeJelse Af Ukendt 4Rsag 3

Betinget, Andre



ICD1o A Danish description A ICD1o B Danish description B Category
Kas MavesaR Nso BlzRebetzNdelse 3
Bis Akut LeverbeteNdelse a R44 Sympt Og Abnorme Fund VedreeRende 3
Opfattelsesevne, Andre
J4s Astma K77 Leverlidelse Ved Sygdom Klassificeret An- 3
detsteds
E66 Fedme, OverveGt N3so BlzRebetzNdelse 3
Tro BlodtryksforhaeJelse Af Ukendt 4Rsag Ry1 Sympt Og Abnorme Fund Vedr Erk- 3
endelsesevne, Andre
Biy LeverbetzNdelse, Anden Akurt Viral F22 Paranoide Psykoser 3
Biy LeverbetzeNdelse, Anden Akut Viral Ms4 Rygsmerter 3
E88 Stofskifteforstyrrelser, Andre G47 SceVnforstyrrelser 3
G24 Dystoni K77 Leverlidelse Ved Sygdom Klassificeret An- 3
detsteds
J4s Astma N3so BlzRebeteNdelse 3
Kzs MavesiR R26 GangbesvaR Og Mobilitetsforstyrrelser 3
Bi18 Kronisk Viral LeverbeteNdelse R44 Sympt Og Abnorme Fund VedraeRende 3
Opfattelsesevne, Andre
Brs Akut LeverbetzNdelse a F22 Paranoide Psykoser 3
Ggo Epilepsi 146 Hjertestop 3
Gy4 Hovedpine Syndromer, Andre Ro6 Abnorm VejrtreKning 3
L3o Dermatit, Andre Former Ri3 SynkebesveR 3
G24 Dystoni L3o Dermatit, Andre Former 3
N3o BlzRebetzNdelse Roé6 Abnorm VejrtreKning 3
146 Hijertestop L3o Dermatit, Andre Former 3
B34 Virussygdom Uden Specifikation Lokali-  E66 Fedme, OvervaGt 3
sation
Ms4 Rygsmerter R33 Urinretention 3
B18 Kronisk Viral LeverbetzNdelse Fa22 Paranoide Psykoser 3
J42 Kronisk Bronkit Uden Specifikation Kas MavesiR 3
Fo7 Personligheds- Og AdfeRdsforstyrrelser  Iro BlodtryksforheeJelse Af Ukendt 4Rsag 3
Hjerneorg Betinget
Gy7 SaeVnforstyrrelser L70 Akne 3
J1io Influenza foraRsaget Af Anden Identifi- M40 Krum Ryg 3
ceret Type Infl.Virus
F13 Sedativa-Hypnotikabetingede ~ Psykiske ~ Ga4 Hovedpine Syndromer, Andre 3
Forstyrrelser
G43 MigreNe Kas MavesaR 3
Biy LeverbetzNdelse, Anden Akut Viral R26 GangbesvaR Og Mobilitetsforstyrrelser 3
B34 Virussygdom Uden Specifikation Lokali- ~ F22 Paranoide Psykoser 3
sation
Kzs MavesiaR Ri3 SynkebesveR 3
L6s HaRtab U Ardannelse, Andre Former Ms4 Rygsmerter 3
E66 Fedme, OvervaGt G21 SekundazR Rystelammelse 3
Ga44 Hovedpine Syndromer, Andre J4s Astma 3
a49 Bakeeriel Infektion U Angivelse Af Lokali- ~ Hs3 Synsforstyrrelser 3
sation
184 HaMorroider R44 Sympt Og Abnorme Fund VedroeRende 3
Opfattelsesevne, Andre
Fs2 Obsessiv-Kompulsiv Tilstand J1o Influenza foraRsaget Af Anden Identifi- 3
ceret Type Infl.Virus
Mig Slidgigt, Andre Former R26 GangbesvaR Og Mobilitetsforstyrrelser 3
J1io Influenza fordRsaget Af Anden Identifi-  Lso NzLdefeber 3
ceret Type Infl.Virus
N3o BleRebeteNdelse R26 GangbesvaR Og Mobilitetsforstyrrelser 3
J42 Kronisk Bronkit Uden Specifikation R26 GangbesveR Og Mobilitetsforstyrrelser 3
J1o Influenza fordRsaget Af Anden Identifi-  R33 Urinretention 3
ceret Type Infl.Virus
Bi18 Kronisk Viral LeverbeteNdelse Ms4 Rygsmerter 3
Boo Tuberkulose, FoeLger Efter R26 GangbesveR Og Mobilitetsforstyrrelser 3
Fas Psykoser, Skizo-Affektive Ro6 Abnorm VejrtreKning 3
Bos Strepto- Og Stafylokokker Som 4Rsag Til ~ E66 Fedme, OverveGt 3
Sygd I Andre Kap
E66 Fedme, OvervaGt 146 Hjertestop 3
Gy7 SaeVnforstyrrelser Rog Symptomer Og Fund Fra KredslaeBs- Og 3
aNdedreTsorganer, Andre
H4o GreeN StzR J1o Influenza foraRsaget Af Anden Identifi- 3
ceret Type Infl.Virus
Ja2 Kronisk Bronkit Uden Specifikation N3o BlaeRebeteNdelse 3
J42 Kronisk Bronkit Uden Specifikation Mig Slidgigt, Andre Former 3
Gy47 SaeVnforstyrrelser Ks9 Forstyrrelser I Tarmfunktionen, Andre 3
Kso Forstyrrelser I Tarmfunktionen, Andre Ms4 Rygsmerter 3
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ICDr10 A Danish description A ICD1o B Danish description B Category
aq1 Anden Blodforgiftning F22 Paranoide Psykoser 3
G43 MigraNe 146 Hjertestop 3
Ms4 Rygsmerter Rzs Abnorme Ufrivillige BevaGelser 3
E66 Fedme, OvervaGt 161 HjernebleeDning 3
By LeverbetzNdelse, Anden Akut Viral Ro6 Abnorm VejrtreKning 3
Bgo Tuberkulose, FeeLger Efter L3o Dermatit, Andre Former 3
Jio Influenza foriRsaget Af Anden Identifi-  L89 LiggesaR 3
ceret Type Infl.Virus
Hio BetzNdelse I ceJets Bindehinde Hss Synsforstyrrelser 3
Jio Influenza fordRsaget Af Anden Identifi-  Kso9 Forstyrrelser I Tarmfunktionen, Andre 3
ceret Type Infl.Virus
J44 Kronisk Obstruktiv Lungesygdom, Anden ~ Ms4 Rygsmerter 3
F33 Periodisk Depression G62 Polyneuropatier, Andre 3
E78 Forstyrrelser 1 Lipoproteinstofskiftet Og ~ G43 MigraNe 3
Andre LipideeMier
a49 Bakeeriel Infektion U Angivelse Af Lokali- ~ F22 Paranoide Psykoser 3
sation
L3o0 Dermatit, Andre Former R32 Urininkontinens Uden Specifikation 3
G44 Hovedpine Syndromer, Andre N3o BlzeRebeteNdelse 3
G62 Polyneuropatier, Andre R41 Sympt Og Abnorme Fund Vedr Erk- 3
endelsesevne, Andre
L7o Akne Msa Rygsmerter 3
Gag Dystoni Hss Synsforstyrrelser 3
L3o Dermatit, Andre Former Mgo Krum Ryg 3
N3o BleRebeteNdelse Ri3 SynkebesvaR 3
a46 Rosen R26 GangbesveR Og Mobilitetsforstyrrelser 3
G43 MigreNe Ja2 Kronisk Bronkit Uden Specifikation 3
Gy7 SceVnforstyrrelser Noo Andre Ikke Inflammatoriske Sygdomme I 3
Kvindens Ydre KceNsdele
B34 Virussygdom Uden Specifikation Lokali-  G43 MigraNe 3
sation
E66 Fedme, OverveGt G24 Dystoni 3
E78 Forstyrrelser I Lipoproteinstofskiftet Og ~ G44 Hovedpine Syndromer, Andre 3
Andre LipideMier
L3o Dermatit, Andre Former Ras Abnorme Uftrivillige BeveGelser 3
B2g4 Hiv Sygdom Og Aids Uden Specifikation ~ Kas MavesiR 3
F22 Paranoide Psykoser K29 Mavekatar 3
161 HjernebloeDning Kzs MavesaR 3
Bis Akut LeverbetzNdelse a Ro6 Abnorm VejrtreKning 3
Ggo Epilepsi Mso Krum Ryg 3
Hrio BeteNdelse I ceJets Bindehinde L3o Dermatit, Andre Former 3




Supplementary Table 3 to Paper I

Cluster no. ~ Most distinguishing code pt.sin cluster  mined  assigned
27 K77: Liver Disor. 53 53 o
66 F14: Psyk. Disor. Due to Cocaine 47 1 46
71 F15: Psyk. Disor. Due to Other Stimulants 33 o 33
38 Fr11: Psyk. Disor. Due to Opioids 28 o 28
45 F19: Psyk. Disor. Due to Multiple Drug Use 39 o 39
8 Zo4: Examination and Observation 138 4 134
1 F20: Schizophrenia 197 5 192
10 F22: Persistent Delusional Disor. 45 29 16
6 J45: Asthma 40 33 7

2 F21: Schizotypal Disor. 120 13 107
101 Fso: Eating Disorders 54 25 29
15 F25: Schizoaffective Disor. 75 11 64
25 G4o: Epilepsy 65 31 34
22 F43: Stress Reaction & Adjustment Disor. 38 6 32
77 G43: Migraine 47 44 3
53 F31: Bipolar Affective Disor. 74 5 69
14 L30: Other Dermatitis 27 26 1

4 L4o: Psoriasis 31 19 12
48 F6o: Specific Personality Disor. 74 o 74
65 F33: Recurrent Depressive Disor. 57 3 54
103 F40: Phobic Anxiety Disorders 64 15 49
54 Fro: Psyk. Disor. Due to Alcohol 43 o 30
11 Fo7: Psyk. Disor. Due to Brain Dis/Damage/Dysfunction 24 o 24
78 Fo6: Other Psyk. Disor. Due to to Brain Dis/Damage/Dysfunction 31 1 30
72 I1o: Hypertension 27 11 16
26 E1o: Insulin-Dependent Diabetes Mellitus 26 7 19
Total 1497 342 1142

Table S3: The table shows how the members of the 26 clusters in figure 3 are associated with the ICD1o code
that is most distiguishing for that cluster. Mined contains those patients where the association comes only
from mining, and assigned contains those patients where association comes from assignment only or from
both assignment and mining. Cluster 54 contains 13 patients that are in fact not associated to F1o at all.
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